

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculum Design and Development
Metric	1.1.3	Average percentage of courses having focus on employability/ entrepreneurship/ skill Development offered by the department.

DEPARTMENT OF AEROSPACE ENGINEERING

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

i. Bachelor of Technology (Aerospace Engineering) (Full Time)	S. No.	Programme Name
	i.	Bachelor of Technology (Aerospace Engineering) (Full Time)

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
	Words highlighted with Red Color	-	Employability
	Words highlighted with Purple Color	-	Skill Development

Name of the Course	Course Code	Year of introduct ion	Activities with direct bearing on Employability/ Entrepreneurship/ Skill development
	B.Tech. Aerospac	e Engineerin	
	2021-22 A	CADEMIC Y	YEAR
XMA101	Calculus and Linear Algebra	2018-19	Employability/ Entrepreneurship/ Skill development - Assignment, Test, Seminar, Quiz
XBE102	Electrical and Electronic Engineering Systems	2015-16	Employability/ Entrepreneurship/ Skill development - Assignment, Class Test, Seminar, Quiz
XAP103	Applied Physics for Engineers	2018-19	Employability/ Entrepreneurship/ Skill development - Assignment, Test, Seminar, Quiz
XEG104	Engineering Graphics and Design	2018-19	Employability/ Entrepreneurship/ Skill development – Problem solving, Assignment, Test, Seminar, Quiz
XGS105	Speech Communication	2021-22	Employability/ Entrepreneurship/ Skill development - Group Discussion, Oral Presentation, Quiz
XUM106	Constitution of India	2018-19	Employability/ Entrepreneurship/ Skill development - Test, Quiz, Assignment
XBE107	Electrical and Electronic Engineering Systems Lab	2015-16	Employability/ Entrepreneurship/ Skill development - Record Writing, Observation, Mini project
XAP108	Applied Physics for Engineers Lab	2018-19	Employability/ Entrepreneurship/ Skill development - Record Writing, Observation, Mini project
XMA201	Calculus, Ordinary Differential Equations and Complex Variable	2018-19	Employability/ Entrepreneurship/ Skill development - Test, Quiz, Tutorial
XCP202	Programming for Problem Solving	2018-19	Employability/ Entrepreneurship/ Skill development - Assignment, Class Test, Seminar
XAC203	Applied Chemistry for Engineers	2018-19	Employability/ Entrepreneurship/ Skill development - Problem solving, Assignment, Quiz, Test
XGS204	Technical Communication	2021-22	Employability/ Entrepreneurship/ Skill development - Group discussion, Presentation, Assignment
XWP205	Workshop Practices	2018-19	Employability/ Entrepreneurship/ Skill development - Record Writing, Observation, Mini project
XEM206	Engineering Mechanics	2015-16	Employability/ Entrepreneurship/ Skill development - Assignment, Attendance, Seminar, Case study
XCP207	Programming for Problem Solving Lab	2018-19	Employability/ Entrepreneurship/ Skill development - Record Writing, Observation, Mini project

XAC208	Applied Chemistry for Engineers Lab	2018-19	Employability/ Entrepreneurship/ Skill development - Record Writing,
	C		Observation, Mini project
XMA301	Transforms and Partial		Employability/ Entrepreneurship/ Skill
	Differential Equations	2015-16	development - Assignment,
	-	2015-10	Attendance, Class Work, Problem
			solving
XAS302	Material Science and		Employability/ Entrepreneurship/ Skill
	Metallurgy	2018-19	development - Assignment,
			Attendance, Seminar, Case study
XAS303	Solid Mechanics and Fluid		Employability/ Entrepreneurship/ Skill
	Mechanics	2018-19	development - Assignment,
			Attendance, Seminar, Case study
XEM304	Engineering Mechanics		Employability/ Entrepreneurship/ Skill
		2015-16	development - Assignment,
		2010 10	Attendance, Seminar, Case study
XUM305	Entrepreneurship		Employability/ Entrepreneurship/ Skill
X0101303	Development	2015-16	development - Business plan,
	Development	2013-10	Seminar, Attendance, Assignment
XAS306	Engineering		Employability/ Entrepreneurship/ Skill
AA3300			development - Assignment,
	Thermodynamics	2015-16	Attendance, Seminar, Case study,
XA COOT			Slip Test
XAS307	In-Plant Training- I		Employability/ Entrepreneurship/ Skill
		2015-16	development - Work Diary, Report,
			Presentation, Attendance, Feedback
			from industry
XAS401	Aerodynamics I		Employability/ Entrepreneurship/ Skill
		2018-19	development - Assignment, Case
			study, Slip Test, Attendance, Record
			Writing, Observation, Mini project
XAS402	Aircraft Structures I		Employability/ Entrepreneurship/ Skill
		2018-19	development - Assignment, Class
			notes, Attendance
XUM403	Human Ethics, Values,		Employability/ Entrepreneurship/ Skill
	Rights and Gender Equality	2015-16	development - Case study, Seminar,
			Class Test
XAS404	Aircraft Propulsion		Employability/ Entrepreneurship/ Skill
		2018-19	development - Poster Presentation,
		2010-19	Case study, Seminar, Record
			Writing, Observation, Mini project
XAS405	Elements of Satellite	0010 10	Assignment, Seminar, Case Study,
	Technology	2018-19	Attendance
XASE04	Airframe Maintenance and		Employability/ Entrepreneurship/ Skill
	Repair	2015-16	development - Assignment, Seminar,
	- r	v	Case study
XAS501	Aerodynamics-II		Employability/ Entrepreneurship/ Skill
1110001		2018-19	development - Assignment, Class
			work, Quiz, Test, Applications
XAS502	Aircraft Structures- II		Employability/ Entrepreneurship/ Skill
AA5J02		2018-19	development - Assignment, Seminar,
		4010-17	Case study, Record Writing,
			Case study, Record writing,

			Observation, Mini project
XAS503	Rocket and Spacecraft		Employability/ Entrepreneurship/ Skill
	Propulsion	2018-19	development - Assignment, Seminar,
	Propulsion		Case study
XAS504	Space Mechanics		Employability/ Entrepreneurship/ Skill
		2015-16	development - Assignment, Seminar,
			Slip Test, Case study,
XASE07	Mechanics of Machines		Employability/ Entrepreneurship/ Skill
		2015-16	development - Assignment, Test,
			Seminar, Case study
X**OE*	Open Elective – I		Employability/ Entrepreneurship/ Skill
		2015-16	development - Assignment, Seminar,
			Slip test, Case study
XUM507	Essence of Indian		Employability/ Entrepreneurship/ Skill
	Traditional Knowledge	2018-19	development - Assignment, Seminar,
			Slip test, Quiz
XAS508	In-Plant Training – II		Employability/ Entrepreneurship/ Skill
		2015-16	development - Work Diary, Report,
			Presentation, Attendance, Feedback
TA COL			from industry
XAS601	Flight Dynamics		Employability/ Entrepreneurship/ Skill
		2015-16	development - Assignment, Seminar,
VAC(02			Case study
XAS602	Finite Element Analysis	2018-19	Employability/ Entrepreneurship/ Skill
		2010-19	development - Assignment, Seminar, Case study, Test
XAS603	UAV Technologies		Employability/ Entrepreneurship/ Skill
AA5005	UAV reenhologies		development - Assignment, Seminar,
		2018-19	Case study, Record Writing,
			Observation, Mini project
XAS604	Avionics		Employability/ Entrepreneurship/ Skill
1110001	T WIOINES		development - Assignment, Seminar,
		2015-16	Case study, Record Writing,
			Observation, Mini project
XASE14	Aircraft Rules and		Employability/ Entrepreneurship/ Skill
		2015-16	development - Assignment, Seminar,
	Regulations CAR I and II		Case study
XUM607	Constitution of India		Employability/ Entrepreneurship/ Skill
110111007		2018-19	development - Assignment, Seminar,
			Case study, Quiz
XAS701	Computational Fluid		Employability/ Entrepreneurship/ Skill
	1	201E 16	development - Assignment, Seminar,
	Dynamics	2015-16	Case study, Slip test, Record
			Writing, Observation, Mini project
XASE20	Helicopter Maintenance		Employability/ Entrepreneurship/ Skill
	_	2015-16	development - Assignment, Seminar,
			Case study,
XASE24	Missile Guidance and		Employability/ Entrepreneurship/ Skill
	Control	2015-16	development - Assignment, Seminar,
			Case study

XAS705	Project Phase-I	2015-16	Employability/ Entrepreneurship/ Skill development - Review, PPT Presentation, Fabrication, Report submission
XUM706	Cyber Security	2015-16	Employability/ Entrepreneurship/ Skill development - Assignment, Seminar, Test
XAS707	In-Plant Training-III	2015-16	Employability/ Entrepreneurship/ Skill development - Work Diary, Report, Presentation, Attendance, Feedback from industry
XASE28	Cryogenics	2015-16	Employability/ Entrepreneurship/ Skill development - Assignment, Seminar, Case study
XAS804	Project Phase II	2015-16	Employability/ Entrepreneurship/ Skill development - Review, PPT Presentation, Fabrication, Report submission

SYLLABUS FOR B.TECH. AEROSPACE (FT) ACADEMIC YEAR 2021-22

COUR	COURSE CODEXMA101LTF						
	RSE NAME	BRA	3	1	0	4	
	EQUISITES	L	Τ	Р	Н		
	= 3:0.5:0.5			3	1	0	4
	RSE OBJECTI		<u> </u>				
• Un	derstand the ap	plication of calculus and linear algebra in		g.			
COUR	SE OUTCOM		DOMAIN		LEV	ΈL	
CO1	<i>Apply</i> orthogored form to canon	nal transformation to reduce quadratic ical forms.	Cognitiv	e		memł Apply	bering ing
CO2		series to tests the convergence of the d series. Half range Fourier sine and	Cognitiv Psychomo		Re		ing bering esponse
CO3		vative of composite functions and ons. Euler's theorem and Jacobian.	Cognitiv Psychomo			embe d Resj	ringGui ponse
CO4	<i>Explain</i> the functions of two variables by Taylor's expansion, by finding maxima and minima with and Cognitive Affe						inding
CO5		ntial and Integral calculus to notions of to improper integrals.	Cognitiv	e		Applying	
UNIT							L+3T
		n - Eigen values and Eigen vectors -Pr		-			-
		ilton Theorem – Diagonalisation of Ma					
		Orthogonal Quadratic form – canonical		e of (Quadi	atic fo	orm and
UNIT		adratic form to Canonical form (Orthogon NCES AND SERIES	onai onry).			1	2L+3T
		and examples-Series: Types and conv	ergence- Sei	ries c	of pos		-
		comparison test, Integral test and D'.					
Half ra	nge sine and co	sine series- Parseval's Theorem.					
UNIT		VARIABLE CALCULUS: PARTIAL					12L+3T
		y –Partial differentiation – Total Der					
Composite Functions: Change of Variables – Differentiation of an Implicit Function - Euler's							
	m- Jacobian.	VADIADI E CALCULUS, MANJAA		ТА		1	
UNIT IV MULTIVARIABLE CALCULUS: MAXIMA AND MINIMA AND 12L+3 VECTOR CALCULUS						2L+3T	
Taylor's theorem for function of Two variables- Maxima, Minima of functions of two variables:							
with and without constraints - Lagrange's Method of Undetermined Multipliers - Directional							
Derivatives - Gradient, Divergence and Curl.							
UNIT		RENTIAL AND INTEGRAL CALCU		o. o 1			2L+3T
Evolutes and involutes; Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.							
-	BOOKS						
		Higher Engineering Mathematics", Tata	McGraw Hi	ll Ne	w De	lhi, 1	th
	,					,	

	Reprint, 2015. (Unit-1, Unit-3 and Unit-4).								
2.	N.P. Bali and Manish Goyal, "A text book of Engineering Mathematics", Laxmi								
	Publications, Reprint, 2014. (Unit-2).								
3.	B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 40 th Edition, 2010.								
	Unit-5)								
REF	RENCE BOOKS								
1.	B.B. Thomas and R.L. Finney, "Calculus and Analytic geometry", 9 th Edition, Pearson,								
	Reprint, 2002.								
2.	Veerarajan T., "Engineering Mathematics for first year", Tata McGraw-Hill, New Delhi,								
	2008.								
3.	D. Poole, "Linear Algebra: A Modern Introduction", 2 nd Edition, Brooks/Cole, 2005.								
4.	Erwin kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons,								
	2006.								
E-R	E –REFERENCES								
1.	http://nptel.ac.in/faq/110101010/Prof.IndrajitMukherjee,IIT,Bombay and Prof. TapanP.Bagchi,								
	IT, Kharagpur.								
LEC	JRE: 60TUTORIAL: 15PRACTICAL: 0TOTAL :75								

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	1	1	2	2	8	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	2	0	0	0	1	3	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO ₁₀	1	1	1	1	1	5	1
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	1	1	1	2	7	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1
TOTAL	11	7	7	8	10	-	-

XMA101 - Mapping of CO with PO

– No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURS	SE CODE	XBE102		L	Т	Р	С		
	URSE NAME ELECTRICAL AND ELECTRONIC					0	4		
	ENGINEERING SYSTEMS					-			
PRERE	QUISITES	NIL		L	Т	Р	Η		
C:P:A=	3:0:0			3	1	0	4		
COURS	SE OUTCOM	IES	DOMAIN		LE	CVE	L		
CO1	<i>Define and Relate</i> the fundamentals of electrical parameters and <i>build</i> and <i>explain</i> AC, DC circuits by Cognitive Understand Using measuring devices								
CO2	-	<i>Explain</i> the operation of DC and AC	Cognitive		Und	ersta	and		
CO3	and their ap	<i>Illustrate</i> various semiconductor devices plications and displays the input output as of basic semiconductor devices.	Cognitive		Und	ersta	and		
CO4		<i>Explain</i> thenumber systems and logic ruc t the different digital circuit.	Cognitive		Und	ersta	and		
CO5	<i>Label an</i> microprocess	<i>d</i> Outline thedifferent types of sors and their applications.	Cognitive		Und	ersta	und		
UNIT I		MENTALS OF DC AND AC CIRCUITS JREMENTS	5,	•			9+3		
Fundam		– Ohm's Law – Kirchhoff's Laws - Sou	rces - Volta	age	and	Cu	rrent		
		Transformation - Fundamentals of AC -							
		wer and Power Factor, Phasor Representa	-						
	-	el, Series Parallel Circuit - Operating Pri			-				
-		ents (Ammeter, Voltmeter) and Dynamomore	-		-				
and Ene	ergy meter).								
UNIT I	I ELECT	RICAL MACHINES					9+3		
Generat Motor-	ors, DC moto Construction,	ble of Operation, Basic Equations, Type rs - Basics of Single-Phase Induction Moto Principle of Operation of Single-Phase	or and Three	Pha	se I	nduc	ction		
UNIT I	mers, Auto tra	ONDUCTOR DEVICES					0+2		
		iconductors, Construction, Operation and	Characteristi	<u> </u>	DN	Lund	9+3		
		PNP, NPN Transistors, Field Effect Trans							
	r – Applicatio		istoris unu Di						
UNIT IV DIGITAL ELECTRONICS 9+3									
	Basic of Concepts of Number Systems, Logic Gates, Boolean Algebra, Adders, Subtractors,								
multiplexer, demultiplexer, encoder, decoder, Flipflops, Up/Down counters, Shift Registers.									
UNIT V MICROPROCESSORS 9+3									
Architecture, 8085, pin diagram of 8085, ALU timing and control unit, registers, data and									
address bus, timing and control signals, Instruction types, classification of instructions,									
addressi	ing modes, l	nterfacing Basics: Data transfer concep	ts – Simpl	e F	Prog	amr	ning		
concepts									
LECTU		TUTORIAL: 15PRACTICAL:0			TO	ΓAL	.: 60		
TEXT I									
 Metha V.K, Rohit Mehta, 2020. Principles of Electronics, 12th ed, S Chand Publishing. Albert Malvino, David J.Bates., 2017. Electronics Principles. 7th ed, Tata McGraw-Hill. 									

	New Delhi.
3.	Rajakamal, 2014. Digital System-Principle & Design. 2nd ed. Pearson education.
4.	Morris Mano, 2015. Digital Design. Prentice Hall of India.
5.	Ramesh, S. Gaonkar, 2013, Microprocessor Architecture, Programming and its
	Applications with the 8085, 6 th ed, India: Penram International Publications.
RE	FERENCE BOOKS:
1.	Cotton, H.,2005 Electrical Technology. CBS Publishers & Distributors Pvt Ltd.
2.	Syed, A. Nasar, 1998, Electrical Circuits. Schaum Series.
3.	Jacob Millman and Christos, C. Halkias, 1967, Electronics Devices, New Delhi: Tata
	McGraw-Hill.
4.	Millman, J. and Halkias, C. C., 1972. Integrated Electronics: Analog and Digital Circuits and Systems, Tokyo: McGraw-Hill, Kogakusha Ltd.
5.	Mohammed Rafiquzzaman, 1999. Microprocessors - Theory and Applications: Intel and
	Motorola. Prentice Hall International.
E-I	REFERENCES:
1.	NTPEL, Basic Electrical Technology (Web Course), Prof. N. K. De, Prof. T. K.
	Bhattacharya and Prof. G.D. Roy, IIT Kharagpur.
2.	Prof.L.Umanand, http://freevideolectures.com/Course/2335/Basic-Electrical-Technology#,
	IISc Bangalore.
3.	http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura, IIT Madras.
4.	Dr.L.Umanand, http://www.nptelvideos.in/2012/11/basic-electrical-technology.html, IISC
	Bangalore.

XBE102- Mapping	of COs with GAs
-----------------	-----------------

CO/GA	GA 1	GA 2	GA 3	GA 4	GA 5	G A 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1			1	1	1	
CO 2	3	3	1	1	1	1			1	1	1	
CO 3	2	2	2	1	2	2	1	1	1	1	1	
CO 4	2	2	1	1	1	1	1	1	1	1	1	
CO 5	2	2	1	1	1	1	1	1	1	1	1	
Total	12	12	6	5	6	6	3	3	5	5	5	
Scaled	3	3	2	1	2	2	1	1	1	1	1	

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COU	RSE CODE	XAP103	L	Т		Р	С
COU	COURSE NAME APPLIED PHYSICS FOR ENGINEERS					0	4
	C:P:A 2.8:0.8:0.4 L T				Р	Η	
PREI	REQUISITE	BASIC PHYSICS IN HSC LEVEL	3	1		0	4
COUF	RSE OUTCOM	1ES	Domain			Level	
CO1	CO1 <i>Identify</i> the basics of mechanics, <i>explain</i> the principles of					Remember,	
	elasticity and	d determine its significance in engineering				Under	rstand

systems and technological advances.	Psychomotor:	Mechanism							
CO2 Illustrate the laws of electrostatics, magneto-statics and	Cognitive:	Remember,							
electromagnetic induction; <i>use</i> and <i>locate</i> basic applications of		Analyze,							
electromagnetic induction to technology.	Psychomotor:	Mechanism							
	Affective:	Respond							
CO3 Understand the fundamental phenomena in optics by	Cognitive:	Understand,							
measurement and <i>describe</i> the working principle and		Apply							
application of various lasers and fibre optics.	Psychomotor:	Mechanism							
	Affective:	Receive							
CO4 Analyse energy bands in solids, discuss and use physics	Cognitive:	Understand,							
principles of latest technology using semiconductor devices.		Analyze							
	Psychomotor:	Mechanism							
	Affective:	Receive							
CO5 <i>Develop</i> Knowledge on particle duality and <i>solve</i> Schrodinger	Cognitive:	Understand,							
equation for simple potential.	cognitive	Apply							
UNIT - I MECHANICS OF SOLIDS 9+3									
Mechanics: Force - Newton's laws of motion - work and energy - imp	ulse and momen	tum - torque -							
law of conservation of energy and momentum - Friction.									
Elasticity: Stress - Strain - Hooke's law - Stress strain diagram - Cla									
Moment, couple and torque - Torsion pendulum - Applications of to	-	-							
beams - Experimental determination of Young's modulus: Unifor	m bending and	non-uniform							
bending.		0.2							
UNIT -II ELECTROMAGNETIC THEORY	ala atria Dalariaat	9+3							
Laws of electrostatics - Electrostatic field and potential of a dipole; Di constant, internal field - Clausius Mossotti Equation - Laws of magne									
Lenz's law - Maxwell's equation - Plane electromagnetic waves; their									
for plane, circularly and elliptically polarized light - quarter and half		-							
detection of plane, circularly and elliptically polarized light.	wave plates - p	roduction and							
UNIT –III OPTICS, LASERS AND FIBRE OPTICS		9+3							
Optics: Dispersion- Optical instrument: Spectrometer - Determina	tion of refractiv	ve index and							
dispersive power of a prism- Interference of light in thin films: air wedge - Diffraction: grating.									
LASER : Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - CO ₂ laser -									
Applications	- Nd-YAG laser	-							
		- CO ₂ laser -							
Applications	erical aperture a	- CO ₂ laser -							
Applications Fibre Optics:Principle and propagation of light in optical fibre- Num	erical aperture a	- CO ₂ laser -							
Applications Fibre Optics: Principle and propagation of light in optical fibre- Num angle - Types of optical fibre - Fibre optic communication system (Block	erical aperture a k diagram).	r - CO ₂ laser - nd acceptance 9+3							
Applications Fibre Optics: Principle and propagation of light in optical fibre- Num angle - Types of optical fibre - Fibre optic communication system (Bloc UNIT -IV SEMICONDUCTOR PHYSICS	erical aperture as the diagram).	- CO ₂ laser - nd acceptance 9+3 insulators and							
Applications Fibre Optics:Principle and propagation of light in optical fibre- Num angle - Types of optical fibre - Fibre optic communication system (Bloc UNIT –IV SEMICONDUCTOR PHYSICS Semiconductors: Energy bands in solids - Energy band diagram of g	erical aperture at ek diagram). ood conductors, - Concept of ho	- CO ₂ laser - nd acceptance 9+3 insulators and							
Applications Fibre Optics:Principle and propagation of light in optical fibre- Num angle - Types of optical fibre - Fibre optic communication system (Bloc UNIT -IV SEMICONDUCTOR PHYSICS Semiconductors: Energy bands in solids - Energy band diagram of g semiconductors - Concept of Fermi level - Intrinsic semiconductors	erical aperture at ek diagram). ood conductors, - Concept of hol ect.	 CO₂ laser - acceptance 9+3 insulators and les - doping - 							
Applications Fibre Optics:Principle and propagation of light in optical fibre- Num angle - Types of optical fibre - Fibre optic communication system (Bloc UNIT -IV SEMICONDUCTOR PHYSICS Semiconductors: Energy bands in solids - Energy band diagram of g semiconductors - Concept of Fermi level - Intrinsic semiconductors Extrinsic semiconductors - P type and N type semiconductors - Hall effe	erical aperture a ek diagram). ood conductors, - Concept of hole ect. se bias - Rectifica	 CO₂ laser - acceptance 9+3 insulators and les - doping - ation action of 							
Applications Fibre Optics:Principle and propagation of light in optical fibre- Num angle - Types of optical fibre - Fibre optic communication system (Bloc UNIT –IV SEMICONDUCTOR PHYSICS Semiconductors: Energy bands in solids - Energy band diagram of g semiconductors - Concept of Fermi level - Intrinsic semiconductors Extrinsic semiconductors - P type and N type semiconductors - Hall eff Diodes and Transistors: P-N junction diode - Forward bias and reverse	erical aperture a ek diagram). ood conductors, - Concept of hole ect. se bias - Rectifica P and NPN trans	 CO₂ laser - acceptance 9+3 insulators and les - doping - ation action of sistors - Three 							
Applications Fibre Optics:Principle and propagation of light in optical fibre- Num angle - Types of optical fibre - Fibre optic communication system (Bloc UNIT -IV SEMICONDUCTOR PHYSICS Semiconductors: Energy bands in solids - Energy band diagram of g semiconductors - Concept of Fermi level - Intrinsic semiconductors Extrinsic semiconductors - P type and N type semiconductors - Hall eff Diodes and Transistors: P-N junction diode - Forward bias and reversed diode - Working of full wave rectifier using P N junction diodes - PN	erical aperture a ek diagram). ood conductors, - Concept of hole ect. se bias - Rectifica P and NPN trans	 CO₂ laser - acceptance 9+3 insulators and les - doping - ation action of sistors - Three 							

Introduction to quantum physics, black body radiation, Compton effect, de Broglie hypothesis, wave – particle duality, uncertainty principle, Schrodinger wave equation (Time dependent and Time independent), particle in a box, Extension to three dimension - Degeneracy.

TEXT BOOKS

1 1/1	AT DOOM									
		LECTURE	TUTORIAL	PRACTICAL	TOTAL					
	Hours	45	15		60					
TE	XT BOOK	S	•••	***************************************						
1.	Gaur R. H	K. and Gupta S. L., "I	Engineering Physics'	', Dhanpat Rai Publicati	ons, 2009.					
2.	Avadhanulu M. N. "Engineering Physics" (Volume I and II), S. Chand & Company Ltd., New									
	Delhi, 2010.									
RE	FERENCE	E BOOKS								
1.	Palanisan	ny P. K., "Engineerin	g Physics", Scitech	Publications (India) Pvt.	Ltd, Chennai.					
2.	Arumuga	m M., "Engineering	Physics" (Volume I a	and II), Anuradha Publis	shers, 2010.					
3.	Senthil K	lumar G., " Engineeri	ng Physics", 2nd En	larged Revised Edition,	VRB Publishers,					
	Chennai,	2011.								
4.	Mani P.,	"Engineering Physics	", Dhanam Publicati	ions, Chennai, 2007.						
ER	ESOURC	ES								
1	NPTEL	Engineering Physics	Prof M K Srivast	ava Department of Phy	sics IIT Roorkee					

1. NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

					CO5	Total	Scaled
CO Vs PO	CO1	CO2	CO3	CO4			to
							0,1,2
							and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	0	2	2	0	6	2
PO ₃	2	1	2	2	2	9	2
PO ₄	2		2	2	0	6	2
PO ₅	1	1	1	1	0	4	1
PO ₆	0	0	0	0	0	0	
PO ₇	0	0	0	0	0	0	
PO ₈	0	0	0	0	0	0	
PO ₉	1		1	1	0	3	1
PO ₁₀	0	0	0	0	0	0	
PO ₁₁	0	0	0	0	0	0	
PO ₁₂	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	
PSO ₂	0	0	0	0	0	0	
TOTAL	12	6	12	12	6	-	-

XAP103 Mapping of CO's with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COU	RSE CODE	XEG104	L	Τ	P	С	
	RSE NAME	ENGINEERING GRAPHICS AND		0	2	3	
	EQUISITES	NIL	L	Τ	P 2	Η	
	= 3:0:0		1	0	5		
	RSE OBJECTI						
		ident to design a system, component, o	-				
		s such as economic, environmental, soc	cial, political, eth	iical, n	ealth a	nd safety	
	•	and sustainability					
		dent to communicate effectively			1		
		ident to use the techniques, skills, and i	nodern engineer	ing too	ois nec	essary 10	
	gineering praction		DOMANI	TIN			
COUR	RSE OUTCOM		DOMAIN	LEV	EL		
~ ~ .		ational and international standards,	Cognitive	App	v	Guided	
CO1	<i>construct</i> and <i>p</i>	practice various curves	Psychomotor Affective		•	Respond	
	Interpret co	<i>nstruct</i> and <i>practice</i> orthographic	Cognitive				
CO2	• ·	points, straight lines and planes.	Psychomotor		Unders		
	1 5		Affective	Mech	nanism	Respond	
		Construct Sketch and Practice projection of solids Cognitive		Appl	V	over	
CO3	-	ositions and true shape of sectioned	Psychomotor		-	Respond	
	solids.	tch and Practice the development of	Affective Cognitive		-		
CO4		es of simple and truncated solids,	Psychomotor		Understand Ove		
001	intersection of	-	Affective	resp	Respond		
		tetch and practice isometric and	Cognitive	Appl	V	Over	
CO5	perspective vie	ews of simple and truncated solids.	Psychomotor		-	Respond	
TINITT	Ι ΙΝΤΡΟΙ	NICTION FREE HAND SZETCHIN	Affective	1			
UNIT		DUCTION, FREE HAND SKETCHIN TS AND CONSTRUCTION OF PLAN				6L+121	
Import		s in engineering applications – use of d		nts – B	IS spec	rification	
	nventions as per			1 (5 D)	io spec		
Pictori	al representatio	n of engineering objects - representation	on of three dime	ensiona	1 objec	ets in two	
		need for multiple views - developing					
		ensional objects.					
		ed in engineering practice – methods o					
		ala by eccentricity method – cycloidal the above curves. Practice on basic tool		urves -	- consi	ruction -	
UNIT		CTION OF POINTS, LINES AND PL		FS		6L+12l	
	•	orthographic projection – first angle pro			ws = n		
		s located in the first quadrant – determi	•		-	•	
-	-	nes of projection – traces – projection of		-			
		anes of projection-CAD practice on poin		ces un	. eneu		
UNIT	Ĩ	CTION OF SOLIDS AND SECTIONS				6L+12l	
		solids like prism, pyramid, cylinder and		axis is	inclin		
		change of position & auxiliary projection					
+	ple vertical posi	itions by cutting plane inclined to one re-	eference plane a	nd perp	oendicu	lar to the	
		s in inclined position with cutting plane					

-			AD practice on solid models						
UNIT	-		LOPMENT OF SURFACE	ES AND INTERSECTION	OF	6L+12P			
		OLII							
			nt of surfaces - developmen						
			ylinders and cones – develo						
			cutouts perpendicular to						
	-		with cylinder, cylinder & cy	-	ith normal int	ersection of			
			set-CAD practice on intersec						
UNIT			ETRIC AND PERSPECTI			6L+12P			
-	L		ic projection – isometric sca	1 5	1				
			linders and cones - principl						
			ers by visual ray and vanishin	ng point methods-CAD prac	ctice on isome	tric view.			
TEXT	BOOKS								
1.	•	an,K.	V, " A Textbook of Engined	ering Graphics", Dhanalaks	shmi Publishe	rs, Chennai,			
	2006.								
2.	Dr. P.K	. Sriv	idhya, P. Pandiyaraj, "Engin	neering Graphics", PMU Pu	blications, Va	llam, 2013.			
REFE	RENCE	BOC	OKS						
1.	Luzadd	er an	d Duff, "Fundamentals of E	Engineering Drawing" Prent	tice Hall of Ir	ndia PvtLtd.			
	XI Edit			6 6 6 6					
2.	Venugo	pal,k	K. and Prabhu Raja, V., "Eng	gineering Graphics", New	Age Internatio	onal(P) Ltd.,			
	2008	• ′	J / / (2				
3.	Gopala	krishı	nan K.R. "Engineering Draw	ing I & II" Subhas Publicat	ions, 1998.				
4.	Shah. N	1.B a	nd Rana B.C "Engineering D	Drawing" Pearson Education	n, 2005.				
E-RE	FERENC	CES							
1.	http:// p	beriya	rnet/e-content						
2.	Http://nptel.ac.in/courses/112103019/								
LECT	URE: 15	5	TUTORIAL: 0	PRACTICAL: 30	TOTAL:45				

XEG104 - Mapping of CO with PO

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	3	3	3	3	3	15	3
PO ₃	3	3	3	3	3	15	3
PO ₄	2	1	1	1	1	6	2
PO ₅	3	3	3	3	3	15	3
PO ₆	2	1	1	1	1	6	2
PO ₇	3	3	3	3	3	15	3

PO ₈	1	1	1	1	1	5	1
PO ₉	1	1	1	1	1	5	1
PO ₁₀	2	1	1	1	1	6	2
PO ₁₁	3	2	2	2	2	11	3
PO ₁₂	3	3	3	3	3	15	3
PSO ₁	0	0	0	0	0	0	0
PSO ₂	1	1	1	1	1	5	1
TOTAL	30	26	26	26	26	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

							SS	С
COURSE	E NAME	SPEECH COMMUNICATION		0	1	2	0	3
PRE-RE	QUISITES	NIL		L	Т	Р	SS	Η
C:2.6 1	P:0.4 A:0	-		0	1	4	0	5
COURSE	E OUTCOM		DON	MA]	IN	L	EVE	
CO1	Ability to re-	call the types of speeches	Cog	niti	ve	Re	emember	
CO2	Apply the te	chniques in public speaking	Cog	niti	ve	1	Apply	
CO3	<i>Identify</i> the speech	common patterns in organizing a	Cog	niti	memb	er		
CO4	<i>Construct</i> th	ne nature and style of speaking	Cog	niti	(Create		
CO5	I raciulity the speaking skins is yellollotor						Guided Response	
UNIT I	TYPES OF	SPEECHES						9
1.2 – Ana	r types of spe lyzing the au eloping ideas							
-								9
		iblic Speaking						
	1	eded for successful speech making						
_		veryday life situations						
UNIT III		IZATION OF SPEECH						9
	eloping a spe							
U U	anizing the sp							
		velopment – conclusion						0
UNIT IV								9
		g the draft speech niques using ICT tools						
		rom different sources						
	ACTIVITI							9
	ding activitie							7
	ative presenta							

5.3 – Media presentation techniques SUGGESTED READINGS 1. Sanjay Kumar and Pushp Lata. *Communication Skills*. Oxford University Press. 2011 2. Michael Swan. *Practical English Usage*. OUP. 1995

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	0	0	0	0	0	0	0
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	3	3	2	2	2	12	2
PO ₁₀	3	3	3	3	3	15	3
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	10	2
PSO ₁	0	0	0	0	0	0	0
PSO_2	0	0	0	0	0	0	0

XGS105 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURS	SE CODE	XUM106		L	Τ	Р	С	
COURS	SE NAME	CONSTITUTION OF INDIA		0	0	0	0	
PREREQUISITE: NIL						Р	Η	
C:P:A	3:0:0					0	3	
COURSE OUTCOMES DOMAIN					LEVEL			
CO1	Understand the Constitutional History Cognitive				Understanding			
CO2	<i>Understand</i> the Powers and Functions Cognitive					stanc	ling	
CO3	Understand	R	Remembering					
CO4	Understand	the Judiciary	Affective	R	Remembering			

CO5	Understand	the Centre State relations		Cognitive	Understa	nding
UNIT	Ι		·			08
Consti	tutional History	- The Constitutional Rights-	Preamble- Fund	damental R	ights-	
		Directive principles of State	Policy.			
UNIT						09
		The President of India (pov			resident of	
		Ministers-Prime Minister- P	owers and Funct	tions.		10
UNIT						10
	U	ructure and Functions of Lo				
		ocedure in India- Important	t Committes of	Lok Sabha	- Speaker	of the
Lok Sa UNIT						09
		Demonstration C				0.2
	•	- Powers of the Suprem y Jurisdiction-Judicial revie		nal Jurisdi	ction- Ap	pelete
UNIT		y Julisaicuoli- Juaiciai levie	W.			09
		Dolitical Dartica Dola of	aquamar pour	are and fur	actions of	
		- Political Parties- Role of	U			
	-	ssembly- State Judiciary- P				
L	ECTURE 45	TUTORIAL 0	PRACTI 0	CAL		
REFE	RENCES	U	U		43)
<u>1.</u>	W.H.Morris	Shores- Governme	nt and	politics	of	India,
		.Publishers,1974.		Ponties	01	intara,
2.	,	onstitutional Government i	n India, Bomba	y, Asia Pu	blishing H	Iouse,
	1977.		,		U	,
	1977.					
3.	R.Thanker- Th	e Government and politics	of India, London	:Macmillo	n, 1995.	
3. 4.					n, 1995.	
4.	A.C.Kapur- Se	elect Constitutions S,Chand&	& Co.,NewDelhi	, 1995		
	A.C.Kapur- Se		& Co.,NewDelhi	, 1995		
4.	A.C.Kapur- Se V.D.Mahajan-	elect Constitutions S,Chand&	& Co.,NewDelhi ts,S,Chand&Co,	, 1995		
4. 5.	A.C.Kapur- Se V.D.Mahajan- B.C.Rout- Der	elect Constitutions S,Chand&	& Co.,NewDelhi ts,S,Chand&Co, dia.	, 1995		

XUM106- Mapping of COs with POs

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9
~~~									
CO 1	2			1					
CO 2	2			1					
CO 3	2			1					1
CO 4	2			1				1	1
CO 5	2	2		1				1	1
Total	10	2		5				2	3
Scaled to	2	1		1				1	1
0,1,2,3									

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0-No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

	IRSE CODE		XBE1								L	Τ		2	С									
COU	RSE NAME		ELEC				ND		ECTRO	NIC	0	0	]	L	1									
	C D A				RING	SYST	EMS	LAB			<b>T</b>	T												
	C:P:A		1.5:1:		TVOL		IICO				L	T		)	H									
	REQUISITE:			<u>C PE</u>	17510	<u>US IN</u>	HSC	LEVE	<u>CL</u>		0	0		l	2									
COU	RSE OUTCON	M	ES								Doi	nair	n		Leve	1								
CO1	Applythe fun	nda	ament	al el	ectric	al con	cepts	and d	ifferent	iate	Cog				Underst	anc								
	the various el						r		- <u>-</u>		Psych			r	Set									
	the various er			. con	npone	1115.					Affe				Valuin	-								
CO2	Implement a	an	nd <i>ex</i>	ecute	e the	diffe	erent	types	of wi	ring	Cog				Understan									
	connections.							·/ F · · ·		8	Psych			r	Set									
	connections.										Affe	ectiv	e		Valuin	g								
CO3											Cog	nitiv	<i>'e</i>		Underst	anc								
	Demonstrate	e th	he Flu	oresc	cent la	imp co	onnect	tion wi	th choke	e.	Psychomotor Affective			r	Set									
															Valuing									
<b>CO4</b>	Characterize	racterize and display the basic knowledge of								the	Cog				Underst	anc								
	working of P			-	•			100100	<b>50</b> 011	liic	Psychomotor			r	Set									
	working of 1	11.	Junet	.on a			Juc.				Affe				Valuing									
CO5	<i>Implement</i> an	and	exec	<i>ute</i> tk	ie vari	ious d	igital	electro	nic circ	nits	Cog				Understand									
	such as Adde						-8	••••••			Psych			r	Set									
		015		Juon	actors	•					Affe	ectiv	e		Valuin	g								
OBJE	CTIVES																							
c. d.	Understand th Study the cha Verify the wo EXPERIMEN	ara ork	acteris king o	tics o	of dioc	des, Ze	ener d	liodes,	NPN tra															
																_								
Ex. 1				al Cr	mahal	. Too	la ond	1 Cofot	Descou	tions	Dowo	. <b>C</b>				(								
1. 2.				arsv																				
	· · · · · · · · · · · · · · · · · · ·						ients -	- ICSIS	1015, 110		s anu v	Japa	iC1	ioi	is, Dieau									
2.			ctive a		rassiv	0 01011				iucion		Board.												
		f Ac	ctive a	and F			rrent	in ser	ies and		lel rec	isto	re	Testing of DC Voltage and Current in series and parallel resistors which are connected in breadboard by using Voltmeter, Ammeter and Multimeter.										
2. 3.	Testing of	Ac of	ctive a	and F Volta	age ai	nd Cu				paral				W	men are									
3.	Testing of connected	Ac of ed in	ctive a DC in brea	and F Volta adboa	age ar ard by	nd Cu / using	g Volt	meter,		paral				W	men are									
3. 4.	Testing of connected Fluoresce	of ed internet	ctive a DC in brea t lamp	and F Volta adboa	age ar ard by	nd Cu / using	g Volt	meter,		paral				W	men are									
3. 4. 5.	Testing of connected Fluoresce Staircase	Ac of ed in cent e W	ctive a DC in brea t lamp Viring	and F Volta adboa	age an ard by nectio	nd Cu / using on with	g Volt h chok	ke.	Ammete	paral er and	Multi			W										
3. 4. 5. 6.	Testing of connected Fluoresce Staircase Forward a	of ed in cent e W and	ctive a DC in brea t lamp Viring nd Rev	and F Volta adboa o con verse	age an ard by nectio bias c	nd Cu y using on with	g Volt h chok teristi	ke.	Ammete N juncti	paral er and	Multi			W	nich are									
3. 4. 5. 6. 7.	Testing of connected Fluoresce Staircase Forward a Forward a	of ed in cent e W and and	ctive a DC in brea t lamp Viring id Rev id Rev	and F Volta adboa o com /erse /erse	age an ard by nectio bias c bias c	nd Cu y using on with charact	g Volt h chok teristi teristi	ke. ics of P	Ammete N juncti ener dio	paral er and	Multi													
3. 4. 5. 6. 7. 8.	Testing of connected Fluoresce Staircase Forward a Forward a Input and	Ac of ed in ent e W and and d O	ctive a DC in brea t lamp Viring nd Rev nd Rev Dutput	and F Volta adboa o con verse verse t Cha	age an ard by nectio bias c bias c tracter	nd Cu y using on with charact charact ristics of	g Volt h chok teristi teristi of NP	ics of P ics of zon N trans	Ammete N juncti ener dio sistor.	paral er and	Multi			W										
3. 4. 5. 6. 7. 8. 9.	Testing of connectedFluoresceStaircaseForward aForward aInput andConstruct	Ac of ed in cent e W and and d O ctio	DC in brea t lamp Viring nd Rev nd Rev Dutput	Volta Adboa Cons Verse Verse Cha I veri	age ar ard by nectio bias c bias c bias c tracter	nd Cu y using on with charact charact ristics of on of s	g Volt h chok teristi teristi of NP simple	ke. ke. ics of P ics of ze PN trans e logic	Ammete N juncti ener dio sistor. gates.	paral er and on dio de.	Multi			W										
3. 4. 5. 6. 7. 8. 9. 10	Testing of connected Fluoresce Staircase Forward a Forward a Input and Construct	Ac of ed in ent e W and and d O ctio	DC in brea t lamp Viring nd Rev nd Rev Dutput on and on and	Volta adboa o con /erse /erse z Cha l veri l veri	age an ard by nectio bias c bias c tracter ificatio	nd Cu y using on with charact charact ristics of on of s on of a	g Volt h chok teristi teristi of NP simple	ke. ics of P ics of ze N trans e logic g s and su	Ammete N juncti ener dio sistor. gates. ibtractor	paral er and on dio de.	Multi	mete	er.											
3. 4. 5. 6. 7. 8. 9. 10 LEC	Testing of connectedFluoresceStaircaseForward aForward aInput andConstruct	Ac of ed in ent e W and and d O ctio	DC in brea t lamp Viring nd Rev nd Rev Dutput	Volta adboa o con /erse /erse z Cha l veri l veri	age an ard by nectio bias c bias c tracter ificatio	nd Cu y using on with charact charact ristics of on of s on of a	g Volt h chok teristi teristi of NP simple	ke. ics of P ics of ze N trans e logic g s and su	Ammete N juncti ener dio sistor. gates.	paral er and on dio de.	Multi	mete	er.											

#### XBE107- Mapping of COs with GAs

					11 0							
CO/GA	GA 1	GA 2	GA 3	GA 4	GA 5	GA 6	GA 7	GA 8	GA 9	GA 10	GA 11	GA 12
CO 1	3	3	1	1	1	1			1	1	1	
CO 2	3	3	1	1	1	1			1	1	1	
CO 3	2	2	2	1	2	2	1	1	1	1	1	
<b>CO 4</b>	2	2	1	1	1	1	1	1	1	1	1	
CO 5	2	2	1	1	1	1	1	1	1	1	1	
Total	12	12	6	5	6	6	3	3	5	5	5	
Scaled Value	3	3	2	1	2	2	1	1	1	1	1	

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COU	JRSE CODE	XAP108	L	Т	Р	С		
COU	IRSE NAME	APPLIED PHYSICS FOR ENGINEERS LAB	0	0	1	1		
	C:P:A	0:1.5:0.5	L	Т	Р	Н		
PREF	<b>REQUISITE:</b>	BASIC PHYSICS IN HSC LEVEL	0	0	1	2		
COUI	COURSE OUTCOMES			main	Level			
CO1		basics of mechanics, and <i>determine</i> its in engineering systems and technological	Psycl	nome	otor:	r: Mechanism		
CO2	<i>use</i> and <i>loc</i> induction to to	cate basic applications of electromagnetic echnology.	Psycl A	homc Affect		Analyze, Mechanism Respond		
CO3	<i>describe</i> the lasers and fibr	working principle and application of various re optics.	Psycl A	homc Affect	Apply Mechanism Receive			
CO4	Analyse ener principles of l	Psychomotor: Affective:			Analyze Mechanism Receive			

#### LIST OF EXPERIMENTS

Ex.	Experiments	COs						
No								
1.	Torsional Pendulum - determination of moment of inertia and rigidity							
	modulus of the given material of the wire.							
2.	Uniform Bending - Determination of the Young's Modulus of the material of the beam.							
3.	Non-Uniform Bending - Determination of the Young's Modulus of the material of the beam.							
4.	Meter Bridge - Determination of specific resistance of the material of the wire.							
5.	Spectrometer - Determination of dispersive power of the give prism.							
6.	Spectrometer - Determination of wavelength of various colours in Hg source using grating.							
7.	Air wedge - Determination of thickness of a given thin wire.							
8.	Laser - Determination of wavelength of given laser source and size of the given micro particle using Laser grating.							
9.	Post office Box - Determination of band gap of a given semiconductor.							
10.	PN Junction Diode - Determination of V-I characteristics of the given diode.							
LECU	RE:0 TUTORIAL: 0 PRACTICAL: 30 TOTAL:30							
TEXT	BOOKS							

1.	Laboratory Manual "PhysicsLab", Department of Physics, PMIST, Thanjavur.						
REFE	REFERENCE BOOKS						
1.	Samir Kumar Ghosh, "A text book of Advanced Practical Physics", New Central Agency						
	(P) Ltd, 2008.						
2.	Arora C.L., "Practical Physics", S. Chand & Company Ltd., New Delhi, 2013.						
3.	UmayalSundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.						

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	2		2	2	0	6	2
PO ₃	2	1	2	2	2	9	2
PO ₄	2		2	2	0	6	2
PO ₅	1	1	1	1	0	4	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	1		1	1	0	3	1
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	1	1	1	1	1	5	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
	12	6	12	12	6	-	_

#### XAP108 - Mapping of CO with PO

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

L	Т	P	С
RENTIAL 3	1	0	4
	RENTIAL 3 IABLE		

PREREQUISITES	NIL	L	Т	Р	Н
C:P:A= 3:0.5:0.5		3	1	0	4
<b>COURSE OBJECTIV</b>	VES				

• Understand the application of Calculus, Ordinary Differential Equations and Complex Variable in engineering.

1n e	engineering.						
COUR	SE OUTCOMES	DOMAIN	LEVEL				
CO1	<b>Find</b> double and triple integrals and to find line, surface and volume of an integral by <b>Applying</b> Greens, Gauss divergence and Stokes theorem.	Cognitive	Remember, Apply				
CO2	<b>Solve</b> first order differential equations of different types which are solvable for p, y, x and Clairaut's type.	Cognitive	Apply				
CO3	<b>Solve</b> Second order ordinary differential equations with variable coefficients using various methods.	Cognitive	Apply				
CO4	<b>Use</b> CR equations to verify analytic functions and to find harmonic functions and harmonic conjugate. Conformal mapping of translation and rotation. Mobius transformation.	Cognitive Psychomotor	Remember, Apply Guided Response				
CO5	<b>Apply</b> Cauchy residue theorem to evaluate contour integrals involving sine and cosine function and to state Cauchy integral formula, Liouvilles theorem. Taylor's series, zeros of analytic functions, singularities, Laurent's series.	Cognitive Affective	Apply Receiving				
UNIT	I MULTIVARIABLE CALCULUS (INTEGRA	TION)	9L+3T				
integra integra Green, UNIT	Multiple Integration: Double integrals (Cartesian) - change of order of integration in doubleintegrals - Change of variables (Cartesian to polar) - Triple integrals (Cartesian), Scalar lineintegrals - vector line integrals - scalar surface integrals - vector surface integrals - Theorems ofGreen, Gauss and Stokes.UNIT IIFIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS9L+3TExact - linear and Bernoulli's equations - Euler's equations - Equations not of first degree:						
equation	ns solvable for p - equations solvable for y- equations solvable	olvable for x and	Clairaut's type.				
UNIT							
parame	order linear differential equations with variable conterned terms - Cauchy-Euler equation- Power series solutions of the first kind and their properties.						
UNIT	IV COMPLEX VARIABLE – DIFFERENTIATI	ON	9L+3T				
		octions-harmonic	functions-finding ric, logarithm) and				
	operties- Conformal mappings- Mobius transformations						
UNIT		1 1	9L+3T				
	r integrals - Cauchy-Goursat theorem (without proof)	- Cauchy Integra					
	Liouville's theorem (without proof)- Taylor's ser						
0	rities- Laurent's series - Residues- Cauchy Residue the	· 1	,				
	e integral involving sine and cosine- Evaluation of c	ertain improper	integrals using the				
-	vich contour.						
TEXT	BOOKS						
1.	B.S. Grewal, "Higher Engineering Mathematics", Khar	nna Publishers, 40	)th th Edition, 2008.				

**REFERENCE BOOKS** 

LECTURE: 45

_

TUTORIAL: 15 PRACTICAL: 0

TOTAL :60

#### XMA201 - Mapping of CO with PO

							Scaled to
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	0,1,2 and
							3
PO ₁	3	3	3	3	3	15	3
PO ₂	2	1	1	2	2	8	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	2	0	0	0	1	3	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO ₁₀	1	1	1	1	1	5	1
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	1	1	1	2	7	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
$\frac{\text{TOTAL}}{16 \times 1712 \times 2}$	10	6	6	7	9	-	-

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	CODE XCP202		Т	Р	С			
COURSE NAME	PROGRAMMING FOR PROBLEM	3	0	0	3			
COURSE NAME	SOLVING							
PREREQUISITES	BASIC UNDERSTANDING SKILLS	L	Т	Р	Н			
C:P:A= 3:0:0		3	0	0	3			
<b>COURSE OBJECTI</b>	VES							
• To learn programm	ning language basics and syntax							
• To ignite logical th	ninking							
To understand structured programming approach								
• To deal with user	<ul> <li>To deal with user defined data types</li> </ul>							

• To know about data storage in secondary memory

	RSE OUTCOMES	DOMAIN	LEVEL				
	Define programming fundamentals and Solve simple	Cognitive	Remember				
CO1	programs using I/O statements		Understand				
			Apply				
	Define syntax and write simple programs using	Cognitive	Remember				
CO2							
02			Apply				
		~					
	Explain and write simple programs using functions	Cognitive	Remember				
CO3	and pointers		Understand				
			Apply				
	Explain and write simple programs using structures	Cognitive	Remember				
<b>CO4</b>	and unions	Understand					
			Apply				
	Explain and write simple programs using files and	Cognitive	Remember				
CO5	Build simple projects		Understand				
			Apply				
UNIT							
	uction to components of a computer system, Program – I						
	oduction to C language - Character set - Tokens: Ide						
-	tors – sample program structure -Header files – Data Ty	pes- Variables - (	Output statements -				
-	statements.						
UNIT			9				
	ol Structures - Conditional Control statements: Branchin						
	ires: switch, break, continue, goto statements - A						
Declar	ration – Initialization – Accessing Array Elements – Sear	rching – Sorting -	– Two Dimensional				
Declar arrays	ration – Initialization – Accessing Array Elements – Sear - Declaration – Initialization – Matrix Operations – Mul	cching – Sorting Iti Dimensional A	– Two Dimensiona Arrays - Declaratior				
Declar arrays – Initia	ration – Initialization – Accessing Array Elements – Sear - Declaration – Initialization – Matrix Operations – Mul alization. Storage classes: auto – extern – static. Strings:	cching – Sorting Iti Dimensional A	<ul> <li>Two Dimensional Arrays - Declaration on strings.</li> </ul>				
Declar arrays – Initia UNIT	ration – Initialization – Accessing Array Elements – Sear - Declaration – Initialization – Matrix Operations – Mul alization. Storage classes: auto – extern – static. Strings: III FUNCTIONS AND POINTERS	rching – Sorting Iti Dimensional A Basic operations	- Two Dimensional Arrays - Declaration on strings.				
Declar arrays – Initia UNIT Functi	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa	rching – Sorting Iti Dimensional A Basic operations rameter passing	- Two Dimensional Arrays - Declaration on strings.				
Declar arrays – Initia UNIT Functi arrays	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pato functions – Recursion - Programs using arrays	ti Dimensional A Basic operations rameter passing and functions.	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer				
Declar arrays – Initia UNIT Functi arrays declara	ration – Initialization – Accessing Array Elements – Sear - Declaration – Initialization – Matrix Operations – Mul alization. Storage classes: auto – extern – static. Strings: III FUNCTIONS AND POINTERS ons: Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer	rching – Sorting – Iti Dimensional A Basic operations trameter passing and functions. • arithmetic - Poi	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function				
Declar arrays – Initia UNIT Functi arrays declara Call by	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pato functions – Recursion - Programs using arraysation - Address operator - Pointer expressions & pointery value - Call by Reference - Pointer to arrays - Use of P	rching – Sorting – Iti Dimensional A Basic operations trameter passing and functions. • arithmetic - Poi	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior	ration – Initialization – Accessing Array Elements – Sear - Declaration – Initialization – Matrix Operations – Mul alization. Storage classes: auto – extern – static. Strings: III FUNCTIONS AND POINTERS ons: Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer y value - Call by Reference - Pointer to arrays - Use of P n of linked list.	rching – Sorting – Iti Dimensional A Basic operations trameter passing and functions. • arithmetic - Poi	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function ferential structures				
Declar arrays – Initia UNIT Functi arrays declara Call by Notion UNIT	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer y value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONS	rching – Sorting – Iti Dimensional A Basic operations rrameter passing and functions. arithmetic - Poi Pointers in self-re	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function - ferential structures-				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior UNIT Structu	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pato functions – Recursion - Programs using arraysation - Address operator - Pointer expressions & pointery value - Call by Reference - Pointer to arrays - Use of Pn of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init	rching – Sorting Iti Dimensional A Basic operations rameter passing and functions. arithmetic - Poi Pointers in self-re	- Two Dimensional Arrays - Declaration on strings. 9 methods - Passing Pointers - Pointer nters and function ferential structures 9 e - Functions and				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior UNIT Structu	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer y value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init ures - Passing structure to elements to functions - Pas	rching – Sorting Iti Dimensional A Basic operations rameter passing and functions. arithmetic - Poi Pointers in self-re	- Two Dimensional Arrays - Declaration on strings. 9 methods - Passing Pointers - Pointer nters and function ferential structures 9 e - Functions and				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior UNIT Structu structu Arrays	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer ty value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init ures - Passing structure to elements to functions - Pas s of structure - Structure within a structure and Union.	rching – Sorting Iti Dimensional A Basic operations rameter passing and functions. arithmetic - Poi Pointers in self-re	Two Dimensional Arrays - Declaration on strings. Bernal methods - Passing Pointers - Pointer nters and function - ferential structures- e - Functions and structures -				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior UNIT Structu Arrays UNIT	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Parto functions – Recursion - Programs using arraysation - Address operator - Pointer expressions & pointery value - Call by Reference - Pointer to arrays - Use of Pn of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Initures - Passing structure to elements to functions - Pass of structure - Structure within a structure and Union.VFILES	rching – Sorting Iti Dimensional A Basic operations rameter passing and functions. arithmetic - Poi Pointers in self-re	- Two Dimensional Arrays - Declaration on strings. 9 methods - Passing Pointers - Pointer nters and function - ferential structures 9 e - Functions and stion to functions -				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior UNIT Structu structu Arrays UNIT File m	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer y value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init res - Passing structure to elements to functions - Pas s of structure - Structure within a structure and Union.VFILES anagement in C - File operation functions in C - Definit	rching – Sorting – Iti Dimensional A Basic operations trameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire func	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function - ferential structures- ge - Functions and ction to functions - ge file - Closing a file				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior UNIT Structu structu Arrays UNIT File m - The	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer ty value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init ures - Passing structure to elements to functions - Pas s of structure - Structure within a structure and Union.VFILESanagement in C - File operation functions in C - Definir getw and putw functions - The fprintf&fscanf functions	rching – Sorting – Iti Dimensional A Basic operations trameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire func	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function ferential structures e - Functions and stion to functions - g file - Closing a file				
Declar arrays – Initia Functi arrays declara Call by Notior UNIT Structu Arrays UNIT File m - The Structu	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer ty value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init ures - Passing structure to elements to functions - Pas s of structure - Structure within a structure and Union.VFILES management in C - File operation functions in C - Definir getw and putw functions - The fprintf&fscanf functures.	rching – Sorting – Iti Dimensional A Basic operations trameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire func	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function - ferential structures- ge - Functions and ction to functions - ge file - Closing a file				
Declar arrays – Initia UNIT Functi arrays declara Call by Notion UNIT Structu Arrays UNIT File m - The Structu TEXT	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer y value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init ures - Passing structure to elements to functions - Pas s of structure - Structure within a structure and Union.VFILESmanagement in C - File operation functions in C - Definir getw and putw functions - The fprintf&fscanf functures.T BOOKS	rching – Sorting – Iti Dimensional A Basic operations mameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire func	- Two Dimensional Arrays - Declaration on strings. 9 methods - Passing Pointers - Pointer nters and function - ferential structures- 9 e - Functions and ction to functions - 9 file - Closing a file nction - Files and				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior UNIT Structu Arrays UNIT File m - The Structu TEXT 1.	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions – User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer ty value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONS ures and Unions - Giving values to members - Init ures - Passing structure to elements to functions - Pas s of structure - Structure within a structure and Union.VFILES panagement in C - File operation functions in C - Definir getw and putw functions - The fprintf&fscanf functures.C BOOKSByron Gottfried, "Programming with C", III Edition	rching – Sorting – Iti Dimensional A Basic operations mameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire func	- Two Dimensional Arrays - Declaration on strings. 9 methods - Passing Pointers - Pointer nters and function - ferential structures- 9 e - Functions and ction to functions - 9 file - Closing a file nction - Files and				
Declar arrays – Initia Functi arrays declara Call by Notior UNIT Structu Arrays UNIT File m - The Structu TEXT 1.	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions –User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer ty value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init ures - Passing structure to elements to functions - Pas s of structure - Structure within a structure and Union.VFILES BooksByron Gottfried, "Programming with C", III Edition publications, 2010	rching – Sorting Iti Dimensional A Basic operations rameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire functions and opening a tions - fseek fu	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function ferential structures e - Functions and ction to functions - g file - Closing a file nction - Files and				
Declar arrays – Initia UNIT Functi arrays declara Call by Notion UNIT Structu Arrays UNIT File m - The Structu TEXT 1. 2.	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions –User Defined Functions - Pa to functions – Recursion - Programs using arrays ation - Address operator - Pointer expressions & pointer ty value - Call by Reference - Pointer to arrays - Use of P n of linked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Init ures - Passing structure to elements to functions - Pass s of structure - Structure within a structure and Union.VFILESanagement in C - File operation functions in C - Definir getw and putw functions - The fprintf&fscanf functures.C BOOKSByron Gottfried, "Programming with C", III Edition publications, 2010 YeshwantKanethker, "Let us C", BPB Publications, 200	rching – Sorting Iti Dimensional A Basic operations rameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire functions and opening a tions - fseek fu	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function ferential structures e - Functions and ction to functions file - Closing a file nction - Files and				
Declar arrays – Initia UNIT Functi arrays declara Call by Notior UNIT Structu Structu Arrays UNIT File m - The Structu 1. 2. REFE	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions –User Defined Functions - Pattorto functions – Recursion - Programs using arraysation - Address operator - Pointer expressions & pointery value - Call by Reference - Pointer to arrays - Use of Pattorto flinked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Initures - Passing structure to elements to functions - Pastors of structure - Structure within a structure and Union.VFILESmanagement in C - File operation functions in C - Definitgetw and putw functions - The fprintf&fscanf functionures.C BOOKSByron Gottfried, "Programming with C", III Editionpublications, 2010YeshwantKanethker, "Let us C", BPB Publications, 200CRENCE BOOKS	rching – Sorting Iti Dimensional A Basic operations rameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire func ing and opening a tions - fseek fu	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function ferential structures e - Functions and ction to functions file - Closing a file nction – Files and ed Edition), TMH				
Declar arrays – Initia UNIT Functi arrays declara Call by Notion UNIT Structu Arrays UNIT File m - The Structu TEXT 1. 2. REFE 1.	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions –User Defined Functions - Pattorto functions – Recursion - Programs using arraysation - Address operator - Pointer expressions & pointery value - Call by Reference - Pointer to arrays - Use of Pattorto flinked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Initures - Passing structure to elements to functions - Passs of structure - Structure within a structure and Union.VFILESmaagement in C - File operation functions in C - Definirgetw and putw functions - The fprintf&fscanf functures.C BOOKSByron Gottfried, "Programming with C", III Editionpublications, 2010YeshwantKanethker, "Let us C", BPB Publications, 200CRENCE BOOKSE. Balaguruswamy, Programming in ANSI C, Tata McC	rching – Sorting – Iti Dimensional A Basic operations rrameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire func ng and opening a tions - fseek fu a, (Indian Adapt 8 braw-Hill, 7 th edi	- Two Dimensional Arrays - Declaration on strings. methods - Passing Pointers - Pointer nters and function - ferential structures- ge - Functions and ction to functions - gfile - Closing a file nction – Files and red Edition), TMH				
Declar arrays – Initia UNIT Functi arrays declara Call by Notion UNIT Structu Arrays UNIT File m - The Structu TEXT 1. 2. REFE 1.	ration – Initialization – Accessing Array Elements – Sear- Declaration – Initialization – Matrix Operations – Mulalization. Storage classes: auto – extern – static. Strings:IIIFUNCTIONS AND POINTERSons:Built in functions –User Defined Functions - Pattorto functions – Recursion - Programs using arraysation - Address operator - Pointer expressions & pointery value - Call by Reference - Pointer to arrays - Use of Pattorto flinked list.IVSTRUCTURES AND UNIONSures and Unions - Giving values to members - Initures - Passing structure to elements to functions - Pastors of structure - Structure within a structure and Union.VFILESmanagement in C - File operation functions in C - Definitgetw and putw functions - The fprintf&fscanf functionures.C BOOKSByron Gottfried, "Programming with C", III Editionpublications, 2010YeshwantKanethker, "Let us C", BPB Publications, 200CRENCE BOOKS	rching – Sorting – Iti Dimensional A Basic operations rrameter passing and functions. arithmetic - Poi Pointers in self-re tializing structur ssing entire func ng and opening a tions - fseek fu a, (Indian Adapt 8 braw-Hill, 7 th edi	- Two Dimensional Arrays - Declaration on strings. 9 methods - Passing Pointers - Pointer nters and function - ferential structures- 9 e - Functions and ction to functions - 9 file - Closing a file nction – Files and red Edition), TMH tion 2017.				

3.	Johnson baugh R. and Kalin M., "Applications Programming in ANSI C", III Edition,						
	Pearson Education India, 2003						
E-R	EFERENCE	5					
1.	https://www.	indiabix.com/c-program	nming/questions-and-answ	ers/			
2.	https://www.ja	avatpoint.com/c-programm	ning-language-tutorial				
3.	3. https://www.w3schools.in/c-tutorial/						
LEC	LECTURE: 45 TUTORIAL: 0 PRACTICAL: 0 TOTAL :45						

CO Vs PO	C01	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and
PO ₁	3	3	2	2	2	12	<b>3</b> 3
PO ₂	2	2	2	2	2	10	2
PO ₃	0	0	1	1	1	3	1
PO ₄	0	0	2	2	0	4	1
PO ₅	3	2	2	2	2	11	3
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	1	1	1
PO ₉	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	2	2	1
PO ₁₁	2	2	2	2	2	10	2
PO ₁₂	3	3	2	2	2	12	3
PSO ₁	2	2	2	2	2	10	2
PSO ₂	0	0	0	0	0	0	0
TOTAL	15	14	15	15	16	-	-

#### **XCP202** - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	E CODE XAC203				Р	С
COURSE NAME	APPLIED CHEMISTRY FOR ENG	INEERS	3	1	0	4
PREREQUISITES	NIL		L	Т	Р	Н
C:P:A= 2.5:1:0.5			3	1	0	4
COURSE OBJECTI	VES					
• Understand the ap	plication of chemistry in engineering.					
COURSE OUTCOM	IES	DOMAI	N		LEV	EL

CO1	<i>Identify</i> the periodic properties such as ionization energy, electron affinity, oxidation states and electro negativity. <i>Describe</i> the various water quality parameters like hardness and alkalinity.	Cognitive Psychomotor	Remembering Perception
	<i>Explain and Measure</i> microscopic chemistry in		Understanding
CO2	terms of atomic, molecular orbitals and intermolecular forces.	Cognitive Psychomotor	Set
CO3	<i>Interpret</i> bulk properties and processes using thermodynamic and kinetic considerations.	Cognitive Psychomotor Affective	Applying Mechanism Receive
CO4	<i>Describe, Illustrate and Discuss</i> the chemical reactions that are used in the synthesis of molecules.	Cognitive Psychomotor Affective	Remembering Analyzing Perception Responding
CO5	<i>Apply, Measure</i> and <i>Distinguish</i> the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques	Cognitive Psychomotor	Remembering, Applying Mechanism
UNIT	I PERIODIC PROPERTIES AND WATER CH ve nuclear charge, penetration of orbitals, variations of		8L+3T
alastas	in the periodic table, electronic configurations, atomic	m states as and	ation marine and and
geomet parame Introdu	n affinity and electronegativity, polarizability, oxidation tries, hard soft acids and bases, molecular geometries eters-Definition and explanation of hardness, determina action to alkalinity.	s. Water Chemi tion of hardness	stry-Water quality by EDTA method-
geomet parame Introdu UNIT	<ul> <li>n affinity and electronegativity, polarizability, oxidation tries, hard soft acids and bases, molecular geometries eters-Definition and explanation of hardness, determination to alkalinity.</li> <li>II USE OF FREE ENERGY IN CHEMICAL EQUIPMENT OF THE SUBJECT O</li></ul>	s. Water Chemi tion of hardness QUILIBRIA	stry-Water quality by EDTA method- 12L+3T
geomet parame Introdu UNIT Thermo energie oxidati Contro Advant	<ul> <li>n affinity and electronegativity, polarizability, oxidation tries, hard soft acids and bases, molecular geometries electers-Definition and explanation of hardness, determination to alkalinity.</li> <li>II USE OF FREE ENERGY IN CHEMICAL EQUIVER COMPAREMENT (Sector) and free energy and emf. Cell potentials, the Nernst equivers. Free energy and emf. Cell potentials, the Nernst equivers. The energy and solubility equilibria. Corrosion-Types and the tries of free energy considerations in metal tages of electroless plating, electroless plating of nickel</li> </ul>	s. Water Chemi tion of hardness <b>QUILIBRIA</b> y. Estimations of quation and appli factors affecting llurgy through E	stry-Water quality by EDTA method- 12L+3T f entropy and free cations. Acid base, g corrosion rate and llingham diagrams.
geomet parame Introdu UNIT Therma energie oxidati Contro	n affinity and electronegativity, polarizability, oxidation tries, hard soft acids and bases, molecular geometries eters-Definition and explanation of hardness, determinant action to alkalinity. II USE OF FREE ENERGY IN CHEMICAL EQ odynamic functions: energy, entropy and free energy es. Free energy and emf. Cell potentials, the Nernst eq on reduction and solubility equilibria. Corrosion-Types I methods. Use of free energy considerations in metal tages of electroless plating, electroless plating of nickel	s. Water Chemi tion of hardness <b>DUILIBRIA</b> 7. Estimations or juation and appli , factors affecting llurgy through El and copper on Pr	stry-Water quality by EDTA method- 12L+3T f entropy and free cations. Acid base, g corrosion rate and llingham diagrams.
geomet parame Introdu UNIT Therme energic oxidati Contro Advant (PCB). UNIT Schrod and nat Equation field th Band s <i>Interme</i> Ionic, phenore UNIT	<ul> <li>n affinity and electronegativity, polarizability, oxidation tries, hard soft acids and bases, molecular geometries eters-Definition and explanation of hardness, determination to alkalinity.</li> <li>II USE OF FREE ENERGY IN CHEMICAL EQ odynamic functions: energy, entropy and free energy es. Free energy and emf. Cell potentials, the Nernst equation and solubility equilibria. Corrosion-Types, and the energy considerations in metal tages of electroless plating, electroless plating of nickel</li> <li>III ATOMIC AND MOLECULAR STRUCTURE inger equation. Particle in a box solution and their appropriate the energy level diagrams for transition metal tructure of solids and the role of doping on band structure of solids and the role of doping on band structure of solids and the role of doping on band structure of and Vander waals interactions. Equations of the energy surfaces of H₃, H₂F and HCN and IV SPECTROSCOPIC TECHNIQUES AND API</li> </ul>	s. Water Chemi tion of hardness <b>QUILIBRIA</b> y. Estimations of puation and appli , factors affecting llurgy through El and copper on Pr E plications for con and plots of the m grams of diatomic l ions and their m res. of state of real d trajectories on t <b>PLICATIONS</b>	stry-Water quality by EDTA method- 12L+3T f entropy and free cations. Acid base, g corrosion rate and llingham diagrams. inted Circuit Board 10L+3T njugated molecules nulticenter orbitals. molecules. Crystal nagnetic properties. gases and critical hese surfaces. 7L+3T
geomet parame Introdu UNIT Therma energie oxidati Contro Advant (PCB). UNIT Schrod and nat Equation field th Band s <i>Interma</i> Ionic, phenor UNIT	<ul> <li>n affinity and electronegativity, polarizability, oxidation tries, hard soft acids and bases, molecular geometries eters-Definition and explanation of hardness, determination to alkalinity.</li> <li>II USE OF FREE ENERGY IN CHEMICAL EQUID ON TRADE OF TREE ENERGY IN CHEMICAL EQUID OF TREE ENERGY IN CHEMICAL EQUID OF TREE ENERGY IN CHEMICAL EQUID ON TRADE OF TREE ENERGY IN CHEMICAL EQUID ON TRADE OF TREE ENERGY IN CHEMICAL EQUID OF TREE ENERGY IN CHEMICAL EQUID ON TRADE OF TREE ENERGY IN CHEMICAL EQUID ON TRADE OF TREE OF TREE ENERGY IN CHEMICAL EQUID ON TRADE OF TREE ENERGY OF TREE OF TREE OF TREE ENERGY IN CHEMICAL EQUID ON TRADE OF TREE OF TREE ENERGY IN CHEMICAL EQUID ON TRADE OF TREE OF</li></ul>	s. Water Chemi tion of hardness <b>DUILIBRIA</b> y. Estimations or puation and appli , factors affecting llurgy through El and copper on Pr E plications for con and plots of the m grams of diatomic l ions and their m res. of state of real d trajectories on t <b>PLICATIONS</b>	stry-Water quality by EDTA method- 12L+3T f entropy and free cations. Acid base, g corrosion rate and llingham diagrams. inted Circuit Board 10L+3T njugated molecules nulticenter orbitals. molecules. Crystal nagnetic properties. gases and critical hese surfaces. 7L+3T copy-chromophore,
geomet parame Introdu UNIT Therma energie oxidati Contro Advant (PCB). UNIT Schrod and nat Equation field the Band s <i>Interma</i> Ionic, phenor UNIT Princip auxoch medici Rotatio	<ul> <li>n affinity and electronegativity, polarizability, oxidation tries, hard soft acids and bases, molecular geometries eters-Definition and explanation of hardness, determination to alkalinity.</li> <li>II USE OF FREE ENERGY IN CHEMICAL EQ odynamic functions: energy, entropy and free energy es. Free energy and emf. Cell potentials, the Nernst equation and solubility equilibria. Corrosion-Types, and the energy considerations in metal tages of electroless plating, electroless plating of nickel</li> <li>III ATOMIC AND MOLECULAR STRUCTURE inger equation. Particle in a box solution and their appropriate the energy level diagrams for transition metal tructure of solids and the role of doping on band structure of solids and the role of doping on band structure of solids and the role of doping on band structure of and Vander waals interactions. Equations of the energy surfaces of H₃, H₂F and HCN and IV SPECTROSCOPIC TECHNIQUES AND API</li> </ul>	s. Water Chemi tion of hardness <b>DUILIBRIA</b> y. Estimations of puation and appli , factors affecting llurgy through El and copper on Pr E plications for con and plots of the m grams of diatomic l ions and their m res. of state of real d trajectories on t <b>PLICATIONS</b> Fluorescence and Instrumentation etic resonance sp	stry-Water quality by EDTA method- 12L+3T f entropy and free cations. Acid base, g corrosion rate and llingham diagrams. inted Circuit Board 10L+3T njugated molecules nulticenter orbitals. molecules. Crystal nagnetic properties. gases and critical hese surfaces. 7L+3T copy-chromophore, l its applications in and applications. ectroscopy-concept
geomet parame Introdu UNIT Therma energie oxidati Contro Advant (PCB). UNIT Schrod and nat Equation field the Band s <i>Interma</i> Ionic, phenor UNIT Princip auxoch medici Rotatio	n affinity and electronegativity, polarizability, oxidation tries, hard soft acids and bases, molecular geometries eters-Definition and explanation of hardness, determinant action to alkalinity. II USE OF FREE ENERGY IN CHEMICAL EQ odynamic functions: energy, entropy and free energy es. Free energy and emf. Cell potentials, the Nernst eq on reduction and solubility equilibria. Corrosion-Types I methods. Use of free energy considerations in metal tages of electroless plating, electroless plating of nickel III ATOMIC AND MOLECULAR STRUCTURE inger equation. Particle in a box solution and their ap noparticles Molecular orbitals of diatomic molecules a ons for atomic and molecular orbitals. Energy level diag neory and the energy level diagrams for transition metal tructure of solids and the role of doping on band structure olecular forces and potential energy surfaces dipolar and Vander waals interactions. Equations of mena. Potential energy surfaces of H ₃ , H ₂ F and HCN and IV SPECTROSCOPIC TECHNIQUES AND API ones of spectroscopy and selection rules. Electromes, types of electronic transition and application. I ne. Vibrational spectroscopy-types of vibrations, onal spectroscopy of diatomic molecules. Nuclear magne- nical shift and applications-magnetic resonance imaging	s. Water Chemi tion of hardness <b>DUILIBRIA</b> y. Estimations of quation and appli , factors affecting llurgy through El and copper on Pr E plications for con and plots of the n grams of diatomic l ions and their n res. of state of real d trajectories on t <b>PLICATIONS</b> stronic spectroso Fluorescence and Instrumentation etic resonance sp g. Diffraction and	stry-Water quality by EDTA method- 12L+3T f entropy and free cations. Acid base, g corrosion rate and llingham diagrams. inted Circuit Board 10L+3T njugated molecules nulticenter orbitals. molecules. Crystal nagnetic properties. gases and critical hese surfaces. 7L+3T copy-chromophore, l its applications in and applications. ectroscopy-concept

and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. Isomerism in transitional metal compounds

#### Organic reactions and synthesis of a drug molecule

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization reactions and ring opening reactions. Synthesis of a commonly used drug molecule-Aspirin and paracetamol.

in and paraceta							
Г BOOKS							
			Chemistry, (23 rd edition), New				
Lee. J.D. Concise Inorganic Chemistry, UK, Black well science, 2006.							
<b>I I</b>	Trapp. C, Cady, M. Giunta. C, Atkins's Physical Chemistry, 10th Edition, Oxford						
Glasstone S., 1983.	Lewis D., Elements c	of Physical Chemistry, Lo	ondon, Mac Millan & Co. Ltd,				
& Bacon Ltd.	, 1976.	• `	•				
		elecular Spectroscopy, (3	th Edition), McGraw-Hill Book				
Company Ltd	l. New Delhi, 1977.	c ·					
	-	rmation and mechanism,	(9 th Edition), New Age				
ERENCES	,						
			ples of Physical Chemistry",				
Kuriocose, J	C and Rajaram, J, "Er	ngineering Chemistry", V	Volume I/II, Tata McGraw-Hill				
EFERENCES							
http://www.mc	ooc-list.com/course/chen	nistry-minor-saylororg					
https://www.c	anvas.net/courses/explo	oring-chemistry					
http://freevide	eolectures.com/Course/2	2263/Engineering-Chemist	ry-I				
http://freevide	eolectures.com/Course/	3001/Chemistry-I					
http://freevide	eolectures.com/Course/	3167/Chemistry-II					
http://ocw.mit.	edu/courses/chemistry/						
FURE:45	<b>TUTORIAL:15</b>	PRACTICAL:0	TOTAL:60				
	<b>BOOKS</b> Puri B.R. Sha         Delhi, Shobar         Lee. J.D. Con         Trapp. C, C         publishers, 20         Glasstone S.,         1983.         Morrison R.T         & Bacon Ltd.         Banwell. C.N         Company, Eu         Bahl B.S. an         Company Ltd         P. S. Kalsi, S         International <b>CRENCES</b> Puri B R SI         Vishalpublish         Kuriocose, J         Publishing Co <b>CFERENCES</b> <u>http://www.mode         http://freevide         http://freevide         http://freevide         http://freevide   </u>	<b>BOOKS</b> Puri B.R. Sharma, L.R., Kalia K.K.         Delhi, Shoban Lal Nagin Chand & G         Lee. J.D. Concise Inorganic Chemis         Trapp. C, Cady, M. Giunta. C,         publishers, 2014.         Glasstone S., Lewis D., Elements of         1983.         Morrison R.T. and Boyd R.N. Orga         & Bacon Ltd., 1976.         Banwell. C.N, Fundamentals of Moc         Company, Europe 1983.         Bahl B.S. and Arun Bahl, Advan         Company Ltd. New Delhi, 1977.         P. S. Kalsi, Stereochemistry: Confor         International Publishers, 2017. <b>CRENCES</b> Puri B R Sharma L R and Mac         Vishalpublishing Co., Edition 2004.         Kuriocose, J C and Rajaram, J, "En         Publishing Co. Ltd. New Delhi, 200 <b>CFERENCES</b> http://www.canvas.net/courses/exploit         http://freevideolectures.com/Course//         http://freevideolectures.com/Course//         http://freevideolectures.com/Course//         http://freevideolectures.com/Course//	<ul> <li><b>F BOOKS</b></li> <li>Puri B.R. Sharma, L.R., Kalia K.K. Principles of Inorganic C Delhi, Shoban Lal Nagin Chand &amp; Co., 1993.</li> <li>Lee. J.D. Concise Inorganic Chemistry, UK, Black well scien Trapp. C, Cady, M. Giunta. C, Atkins's Physical Che publishers, 2014.</li> <li>Glasstone S., Lewis D., Elements of Physical Chemistry, Lo 1983.</li> <li>Morrison R.T. and Boyd R.N. Organic Chemistry (6th editio &amp; Bacon Ltd., 1976.</li> <li>Banwell. C.N, Fundamentals of Molecular Spectroscopy, (3' Company, Europe 1983.</li> <li>Bahl B.S. and Arun Bahl, Advanced Organic Chemistry, Company Ltd. New Delhi, 1977.</li> <li>P. S. Kalsi, Stereochemistry: Conformation and mechanism, International Publishers, 2017.</li> <li><b>CRENCES</b></li> <li>Puri B R Sharma L R and Madan S Pathania, "Princi Vishalpublishing Co., Edition 2004.</li> <li>Kuriocose, J C and Rajaram, J, "Engineering Chemistry", V Publishing Co. Ltd. New Delhi, 2000.</li> <li><b>EFERENCES</b></li> <li>http://www.canvas.net/course/chemistry-minor-saylororg</li> <li>http://freevideolectures.com/Course/3001/Chemistry-I</li> <li>http://freevideolectures.com/Course/3167/Chemistry-II</li> <li>http://freevideolectures.com/Course/3167/Chemistry-II</li> <li>http://ocw.mit.edu/courses/chemistry/</li> </ul>				

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	2	3	3	3	13	3
PO ₂	0	0	0	0	0	0	0

XAC203 - Mapping of CO with PO

PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
PO ₇	2	1	2	3	2	10	2
PO ₈	3	2	3	3	2	13	3
PO ₉	3	2	3	3	3	14	3
PO ₁₀	0	0	0	0	0	0	0
<b>PO</b> ₁₁	0	0	0	0	0	0	0
PO ₁₂	0	0	0	0	0	0	0
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURS	SE CODE	XGS204	L	Т	Р	SS	С
COURS	SE NAME	TECHNICAL COMMUNICATION	2	0	0	0	2
PRE-R	EQUISITES	NIL	L	Т	Р	SS	Н
C:	3 P:0 A:0	-	2	2 0 0 0		0	2
COURS	SE OUTCOME	CS	DOMA	DOMAIN LEVE		L	
CO1	Ability to unde	erstand the basic principles	Cognit	ive	Rei	memt	ber
CO2	Apply the tech	niques in writing	Cognit	ive	A	Apply	,
CO3	<i>Identify</i> comm	unicative styles	Cognit	ive	Rei	memt	ber
CO4	<i>Construct</i> the	nature of writing	Cognit	ive	(	Create	;
UNIT I	- Basic Princi	oles				9	9
1.2 – St 1.3 – La	yles used in Tec nguage and To I – Techniques	ne					9
$2.2 - D_{0}$	efinition & Desc	es used in writing cription of mechanism sification-Interpretation					
UNIT I	II – Communio	ation				ļ	9
	odern developm ew letter writing	ent in style of writing gformats					
UNIT I	V – Report Wr	iting				9	9
4.1 - Ty	pes of Report v	riting				•	
	ESTED READ						
<u> </u>		Titing and Speaking Author; Oxford Unive	proity Dra			Jhi o	000
1. 2.		Communicating Business. Engage Learni					009
۷.	winnams K.S.	Communicating Business. Engage Learni	ng mula	VL	iu, 20	12	

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	0	0	0	0	0	0	0
PO ₂	0	0	0	0	0	0	0
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0
<b>PO</b> ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	3	3	2	2	2	12	2
PO ₁₀	3	3	3	3	3	15	3
PO ₁₁	0	0	0	0	0	0	0
PO ₁₂	2	2	2	2	2	10	2
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL							

#### XGS204 - Mapping of CO with PO

 $1 - 6 \rightarrow 1, 7 - 12 \rightarrow 2, 13 - 18 \rightarrow 3$ 

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COUH	RSE CODE	XWP205		L	Τ	Р	С
COUH	RSE NAME	WORKSHOP PRACTICES		1	0	2	3
PRER	REQUISITES	NIL		L	Т	Р	Н
C:P:A	<b>A= 1:3:0</b>			1	0	2	5
COURSE OBJECTIVES							
• To	obtain skills in	machining methods, casting process, mo	oulding metho	ods a	and w	elding	etc.
COUF	DOMAIN		LEV				
CO1	Summarize the machining ope	<i>ize</i> the machining methods and <i>Practice</i> Cognitive goperation. Psychomot					
CO2	• •	casting process, moulding methods sting and Smithy applications.			Remember Perception		
CO3		carpentry and fitting operation and ntry and fitting operations.	0 11		Appl led Re	pply Response	
CO4	<i>Summarize</i> n welding operation	netal joining operation and <i>Practice</i> tion.	Cognitive Psychomot			erstan Resp	dGuide onse

CO5	<i>Illustrate</i> the, electrical and electronics basics and <i>Makes</i> appropriate connections.	Cognitive Psychomotor	Understand Origination
-----	----------------------------------------------------------------------------------------------------	--------------------------	------------------------

COURS	SE CO	NTENT		
EXP.	.NO	TITLE	COs	
1		Introduction to machining process	CO1	
2	r	Plain turning using lathe operation	CO1	
3		Introduction to CNC	CO1	
4		Demonstration of plain turning using CNC	CO1	
5		Study of metal casting operation	CO2	
6		Demonstration of moulding process	CO2	
7		Study of smithy operation	CO2	
8		Study of carpentry tools	CO3	
9		Half lap joint – Carpentry	CO3	
10	)	Mortise and Tenon joint – Carpentry	CO3	
11	1	Study of fitting tools	CO3	
12		Square fitting	CO3	
13	3	Triangular fitting	CO3	
14		Study of welding tools	CO4	
15	5	Square butt joint – welding	CO4	
16	5	Tee joint – Welding	CO4	
17		Introduction to house wiring	CO5	
18		One lamp controlled by one switch	CO5	
19		Two lamps controlled by single switch	CO5	
20		Staircase wiring	CO5	
	RY: 15		L:45	
TEXT ]	BOOK	5		
1.		kshop Technology I,II,III, by S K Hajra, Choudhary and A K G ia Promoters and Publishers Pvt. Ltd., Bombay	Chaoudhary.	
2.		kshop Technology by Manchanda Vol. I,II,III India Publish ndhar.	ning House,	
REFER	RENCE	S		
1.	Manua India I	al on Workshop Practice by K Venkata Reddy, KL Narayana etal.	; MacMillan	
2.		Workshop Practice Manual by T Jeyapoovan; Vikas Publishing ew Delhi	g House (P)	
3.	Works	hop Technology by B.S. Raghuwanshi, Dhanpat Rai and Co., New	w Delhi.	
4.		hop Technology by HS Bawa, Tata McGraw Hill Publishers, New	w Delhi.	
E RESO	OURCE			
1.	http://n	ptel.ac.in/courses/112107145/		

#### XWP205 - Mapping of CO with PO

CO Vs PO CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
--------------	-----	-----	-----	-----	-------	-----------------------------

PO ₁	2	2	2	2	2	10	2
PO ₂	1	1	1	1	1	5	1
PO ₃	2	2	2	2	2	10	2
PO ₄	2	2	2	2	2	10	2
PO ₅	1	1	1	1	1	5	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	1	1	1	1	1	5	1
PO ₉	1	1	1	1	1	5	1
PO ₁₀	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	5	1
PO ₁₂	2	2	2	2	2	10	1
PSO ₁	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0
TOTAL	13	13	13	13	13	-	-

 $1\text{-}6 \rightarrow 1, 7\text{-}12 \rightarrow 2, 13\text{-}18 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

OURSE CODE	XEM206	L	Т	Р	С			
COURSE NAME	ENGINEERING MECHANICS	0	0	3	3			
PREREQUISITES	NIL	L	Т	Р	Η			
C:P:A= 3.5:0.25:0.25		0	0	3	3			
COURSE OBJECTI	RSE OBJECTIVES							

Upon successful completion of the course, student will have:

- Ability to apply mathematics, science, and engineering.
- Ability to design and conduct experiments, as well as to analyze and interpretdata.
- Ability to identify, formulate, and solve engineeringproblems.
- Ability to apply modern engineering tools, techniques and resources to solve complex mechanical engineering activities with an understanding of thelimitations.
- Ability to comprehend the thermodynamics and their corresponding processes that influence the behavior and response of structural components.
- Ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations) and thermodynamics to model, analyze, design, and realize physical systems, components, orprocesses.

COURSE OUTCOMES	DOMAIN	LEVEL
-----------------	--------	-------

CO1	<i>Explain</i> the principles forces, laws and theirapplications.	Cognitive	Understan Apply	-
CO2	<i>Classification</i> of friction, and <i>apply</i> the forces in	Cognitive	Understan	ding,
002	Trusses and beams.		Appl	У
CO3	<i>Explain</i> and <i>Apply</i> moment of Inertia and Virtual work	Cognitive	Understan Apply	•
CO4	Outline and Examine Dynamics	Cognitive	Understan Apply	•
CO5	<i>Explain</i> free and forced vibration	Cognitive	Remem Understar	
UNIT	I INTRODUCTION TO ENGINEERING MEC	HANICS		9L+3T
Forces Forces Static i UNIT Types Bodies Method compre- Machin UNIT Centro and its from fi compo Virtual degrees	of friction, Limiting friction, Laws of Friction, Static , wedge friction, screw jack & differential screw jack d of Sections; Method of Joints; How to determine ession; Simple Trusses; Zero force members; Beam nes.	System, Equi lanar Systems ALYSIS and Dynamic c; Equilibrium he if a membra s & types of VIRTUAL W Notest Section of inertia of s inder, Cone, S and ideal sy h friction, m	librium of Sy and Spatial S c Friction; M in three dim ber is in ter of beams; Fra <b>ORK</b> ns; Centre of C tia of plane s standard section phere, Hook. stem of rigid echanical eff	<ul> <li>vstem of</li> <li>Systems;</li> <li>9L+3T</li> <li>otion of</li> <li>ensions;</li> <li>nsion or</li> <li>ames &amp;</li> <li>9L+3T</li> <li>Gravity</li> <li>ections</li> <li>ons and</li> <li>bodies,</li> <li>ficiency.</li> </ul>
	rium. Applications of energy method for equilibrium. St			
UNIT		· · ·		9L+3T
curvilin polar of angular motion connect Kinetic UNIT Basic	near motion; Plane curvilinear motion (rectangular, near motion; Relative and constrained motion; Newton coordinates). Work-kinetic energy, power, potential e r); Impact (Direct and oblique). Types of motion, Insta and simple problems; D'Alembert's principle and it ted bodies; Work energy principle and its application in es of rigid bodyrotation.	n's 2nd law (n nergy. Impuls ntaneous centres applications n plane motion nd its effects;	rectangular, p se-momentum re of rotation in plane mor of connected Degree of f	ath, and (linear, in plane tion and l bodies; 9L+3T Freedom;
freedor pendul	n system, simple problems, types of pendulum, use			-
	Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New	v Delhi.		

2.	S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New						
	Delhi.						
REF	FERENCE BOOKS						
1.	Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis,						
	Biztrantra ,2nd Edition.						
2.	Prasanna Chandra, 2009, Projects – Planning, Analysis, Selection, Implementation and						
	Reviews, Tata McGraw-Hill.						
3.	P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.						
4.	Arya Kumar, 2012, Entrepreneurship: Creating and Leading an Entrepreneurial organisation,						
	Pearson Education India.						
5.	Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage						
	Learning India.						
6.	Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for						
	Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication,						
	Entrepreneurship Development Institute of India, Ahmedabad.						
E-R	EFERENCES						
1.	Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online						
	entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills						
2.	Jeff Cornwall, "Entrepreneurship From Idea to Launch", Udemy online Education,						
	https://www.udemy.com/entrepreneurship-from-idea-to-launch/						

https://www.udemy.com/entrepreneurship-from-idea-to-launch/ LECTURE: 45 **TUTORIAL: 15** 

**PRACTICAL: 0** 

TOTAL:60

XEM206 - Mapping of CO with PO							
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	1	1	1	1	1	5	1
PO ₂	2	2	2	2	3	11	3
PO ₃	3	3	3	3	3	15	3
PO ₄	1	1	1	1	1	5	1
PO ₅	0	0	0	0	0	0	0
PO ₆	3	3	3	3	3	15	3
PO ₇	1	1	1	1	1	5	1
PO ₈	0	3	0	1	3	7	2
PO ₉	3	3	3	3	3	15	3
<b>PO</b> ₁₀	1	1	1	3	3	9	2
PO ₁₁	2	2	2	3	3	12	3
<b>PO</b> ₁₂	2	2	2	3	3	12	3
PSO ₁	2	2	2	3	3	12	3
PSO ₂	2	2	2	3	3	12	3
TOTAL	23	26	23	30	33	-	-
$1-6 \rightarrow 1, 7-12 \rightarrow 1$	2, $1\overline{3}$ -18 $\rightarrow$ 3						

 $0 \rightarrow 1, /-12 \rightarrow 2, 13 - 18 \rightarrow 3$ 

COUR	RSE CODE	XCP207		L	Т	Р	С	
COUR	RSE NAME	PROGRAMMING FOR PROBLEM SOLVING LAB		0	0			
PRER	EQUISITES	BASIC UNDERSTANDING SKILLS		L	Т	0 2		
C:P:A		0.75:0.25:0		0	0	2	2	
LEAR	NING OBJEC	ΓΙVES						
•	To learn progra	mming language basics and syntax						
•	To ignite logica							
•	To understand	structured programming approach						
•	To deal with us	er defined data types						
•	To know about	data storage in secondary memory						
COUR	<b>RSE OUTCOM</b>	ES	DOM	IAIN		LEVI	EL	
CO1	Solve simple p	programs using I/O statements	Cognit	ive	A	Apply		
			Psycon	notor			ing	
CO2	Solve program	s using control structures and arrays	Cogniti	ive	A	pply		
			Psycon	notor	R	espond	ing	
CO3	Solve program	s using functions and pointers	Cogniti	ive	A	pply		
			Psycon		R	espond	ing	
<b>CO4</b>	Solve program	is using structures	Cognit			Apply		
			Psycon		R	Respondi		
CO5	Solve program	is using files	Cognit			pply		
			Psycon	notor	R	espond	ing	

#### LIST OF EXPERIMENTS

Ex.	Experiments	COs			
No					
1.	Program to display a Leave Letter as per proper format	C01			
2.	i. Program for addition of two numbers	CO1			
	ii. Program to solve any mathematical formula.				
3.	Program to find greatest of 3 numbers using Branching Statements	CO2			
4.	Program to display divisible numbers between n1 and n2 using looping	CO2			
	Statement				
5.	Program to search an array element in an array.	CO2			
6.	Program to find largest / smallest element in an array.	CO2			
7.	Program to perform string operations.				
8.	Program to find area of a rectangle of a given number use four function types.				
9.	Programs to pass and receive array and pointers using four function types				
10.	Programs using Recursion for finding factorial of a number	CO			
11.	Program to read and display student mark sheet of a student structures with variables				
12.	Program to read and display student marks of a class using structures with arrays	CO			
13.	Program to create linked list using structures with pointers	CO			
14.	Program for copying contents of one file to another file.				
15.	Program using files to store and display student mark list of a class using structures with array	CO:			
TUTORIAL:0 PRACTICAL:30 TOTAL:30					

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	2	2	12	3
PO ₂	2	2	2	2	2	10	2
PO ₃	0	0	1	1	1	3	1
PO ₄	0	0	2	2	0	4	1
PO ₅	3	2	2	2	2	11	3
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	1	1	1
PO ₉	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	2	2	1
<b>PO</b> ₁₁	2	2	2	2	2	10	2
PO ₁₂	3	3	2	2	2	12	3
PSO ₁	2	2	2	2	2	10	2
PSO ₂	0	0	0	0	0	0	0
TOTAL	15	14	15	15	16	-	-

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE (	CODE	XAC208				L	Т	Р	С
COURSE NAME		APPLIED CHEMISTRY FOR ENGINEERS LAB				0	0	1	1
PREREQU	ISITES	NIL					Т	Р	Н
C:P:A= 0:2	2:0						0	1	2
COURSE (	OBJECTIV	<b>VES</b>							
COURSE OUTCOMES				DOMAIN		LEVEL			
-		relevant to	dentify the principles of vant to the study of science ng		Cognitive Psychomotor				ember eption
CO2	Analyzea properties	nd <i>Measur</i> ssuch as		lar/system tension,	Cognitive Psychomotor		ι		erstand alyze

	viscosity, conductance of solutions, redox	Affective	Percepti	on			
	potentials, extent of hardness, chloride Receive						
	content ofwater, etc.						
	Analyze the synthetic procedure and rate	Cognitive					
CO3	constants of reactions from concentration		Apply				
	of reactants/products as afunction of time						
LIST OF	EXPERIMENTS						
Ex. No	Experiments			COs			
1.	Determination of chloride ion present in the	water sample by A	rgentometric	CO1			
	method.			001			
2.	Determination of total, temporary and permanent hardness of water sample						
	by EDTA method.			CO1 CO2			
3.	Determination of cell constant and conductance of solutions.						
4.	Potentiometry - determination of redox potentials and emfs.						
5.	Determination of surface tension and viscosity	·		CO3			
6.	Adsorption of acetic acid by charcoal.			CO3			
7.	Determination of the rate constant of a reaction	n.		CO3			
8.	Estimation of iron by colorimetric method.			CO3			
9.	Synthesis of a polymer/drug.			CO3			
10.	Saponification/acid value of oil.			CO3			
LECURE	:0 TUTORIAL: 0 PRACTIO	CAL: 30 TO	TAL:30				
TEXT BO	DOKS						
1.	Laboratory Manual "ChemistryLab", Departm	ent of Chemistry,	PMIST, Thanja	ıvur.			

#### **REFERENCE BOOKS**

1.	Mendham, Denney R.C,. Barnes J.D and Thomas N.J.K., "Vogel's Textbook of						
	Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.						
2.	Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry",						
	8th Ed.; McGraw-Hill: New York, 2003.						
E-RESO	E-RESOURCES- MOOC's						
1.	http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques						
2.	http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques						
3.	http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011						

XAC208 - Mapping of CO with PO								
CO Vs PO	CO1	CO2	CO3	Total	Scaled to 0,1,2 and 3			
PO ₁	3	2	2	7	2			
PO ₂	3	2	2	7	2			
PO ₃	3	2	2	7	2			
PO ₄	3	2	2	7	2			
PO ₅	2	1	1	4	1			
PO ₆	3	2	2	7	2			

PO ₇	3	2	2	7	2
PO ₈	0	1	0	1	0
PO ₉	1	1	1	3	1
PO ₁₀	1	1	1	3	1
PO ₁₁	1	1	0	2	1
PO ₁₂	0	1	0	1	0
PSO ₁	0	1	0	1	0
PSO ₂	0	1	0	1	0

 $1 \xrightarrow{} 1, 6 \xrightarrow{} 1, 6 \xrightarrow{} 2, 11 \xrightarrow{} 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XMA301		L	Т	Р	С
COURSE NAME	TRANSFORMS AND PAR	RTIAL	3	1	0	4
COURSE NAME	DIFFERENTIAL EQUATIONS					
PREREQUISITES	CALCULUS AND LINEAR ALGEBRA		L	Т	Р	Η
C:P:A= 3:0.5:0.5			3	1	0	4
<b>COURSE OBJECTI</b>	VES					

• Understand the application of transforms and partial differential equations in engineering.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Solve</i> standard types of first order differential equation and to solve linear partial differential equations of second order with constant coefficients. Elimination of arbitrary constants and functions.	Cognitive Psychomotor	Apply Imitation
CO2	State Dirichlet's condition. Explain general Fourier series of the curve $y = f(x)$ in the interval $(0,2\pi)$ (- $\pi$ , $\pi$ ), $(0, 2\ell)$ , (- $\ell$ , $\ell$ ) and $(0, \pi)$ . Perform harmonic analysis	Cognitive Psychomotor	Remember, Understand, Imitation
CO3	<i>Solve</i> the standard Partial Differential Equations, arising in engineering Problems, like one dimensional Wave equation and Heat flow equation by Fourier series method in Cartesian coordinates. Classify second order quasi PDE.	Cognitive Affective	Apply Receiving
CO4	<i>Find</i> the Fourier transform and Fourier sine and cosine transforms of simple functions using definition and its properties.	Cognitive	Remember, Apply
CO5	<i>Apply</i> the properties of Z transform to <i>Find</i> the Z transform and inverse Z transform of sequence and functions, and to solve the difference equation using them.	Cognitive	Remember, Apply

## UNIT IPARTIAL DIFFERENTIAL EQUATIONS9L+3TFormation of partial differential equations by elimination of arbitrary constants and arbitrary<br/>functions – Solution of standard types of first order partial differential equations – Lagrange's<br/>linear equation – Linear partial differential equations of second and higher order with constant

### coefficients.UNIT IIFOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series – Half range cosine series –Parseval's identity – Harmonic Analysis.

#### UNIT IIIAPPLICATIONS OF BOUNDARY VALUE PROBLEMS9L+3T

Classification of second order quasi linear partial differential equations – Solutions of one dimensional wave equation – One dimensional heat equation – Steady state solution of two dimensional heat equation (Insulated edges excluded) – Fourier series solutions in Cartesian coordinates.

UNIT IV FOURIER TRANSFORM

9L+3T

9L+3T

Fourier integral theorem (without proof) – Fourier transform pairs – Fourier Sine and Cosine transforms – properties – Transforms of simple functions – Convolution theorem – Parseval's identity.

UNIT VTRANSFORM AND DIFFERENCE EQUATIONS9L+3TZ-transform – Elementary properties – Inverse Z – transform – Convolution theorem – Initial and<br/>Final value theorems - Formation of difference equations – Solution of difference equations using<br/>Z-transform.9L+3T

#### TEXT BOOKS

- 1. Grewal, B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, New Delhi (2012).
- 2. Narayanan, S., ManicavachagomPillay, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volumes II and III, S.Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai (2002).

3. Veerarajan. T., "Transforms and Partial Differential Equations", Second reprint, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012.

#### **REFERENCE BOOKS**

- 1. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw Hill Book Co., Singapore (1987).
- 2. Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics Volume III", S. Chand & Company Ltd., New Delhi (1996).
- 3. Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics" 7th Edition Lakshmi Publications (P) Limited, New Delhi (2007).
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8 th Edition, Wiley India, 2007.
- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.

#### LECTURE: 45 TUTORIAL: 30 PRACTICAL: 0TOTAL HOURS:60

#### XMA301 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	15	3
PO ₂	0	0	2	2	2	6	2
PO ₃	0	0	0	0	0	0	0
PO ₄	0	0	0	0	0	0	0
PO ₅	0	0	0	1	1	2	1
PO ₆	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0
PO ₁₀	1	1	1	1	1	5	1
PO ₁₁	0	0	1	1	1	3	1
PO ₁₂	1	1	2	1	1	6	2
PSO ₁	0	0	0	0	0	0	0
$\begin{array}{ c c } PSO_2 \\ \hline 1.6 \rightarrow 1.7 12 \rightarrow 2 \end{array}$	1	1	1	1	1	5	1

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 

0 – No Relation, 1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE CODE	XAS302	L	Т	Р	С			
COURSE NAME	MATERIAL SCIENCE AND METALLURGY	3	0	0	3			
PREREQUISITES	NIL	L	Т	Р	Η			
C:P:A= 3:0:0		3	0	0	3			
<b>COURSE OBJECTI</b>	COURSE OBJECTIVES							

• Understand structure-properties properties relationship.

• Manipulate atomic/micro structural processes to create desired structure & processes to create desired structure & properties.

• To study about the process of powder metallurgy.

COUR	RSE OUTCOMES	DOMAIN	LEVEL		
CO1	<i>Recall</i> the Basic Properties of Engineering Materials.	Cognitive	Remember, Understand, Apply		
CO2	<i>Classify</i> the concepts of iron and steel.	Cognitive Remember, Understand, Ap			
CO3	<i>Analyze</i> the heat treatment process and its applications.	Cognitive	Remember, Understand, Apply		

CO4	<i>Analyze</i> the nonmetallic materials and its applications.	Cognitive	Remember, Understand, Apply
CO5	<b>Describe</b> the process of powder metallurgy and its applications	Cognitive	Remember, Understand, Apply
CO6	<i>List</i> the Properties and applications of smart materials	Cognitive	Remember, Understand, Apply
UNIT	I PROPERTIES OF METALLIC MATERIAL	.S	9
crystal volum plastic mecha	Crystallography- Crystal structure – BCC, FCC lographic planes and directions, miller indices. Crystal e defects – Grain size, ASTM grain size number. Frank modes of deformation slip & twinning, strain has nism and types.	imperfections, Reed source o	point, line, planar and f dislocation Elastic & ns cracking. Fracture
UNIT			9
transfo effect,	solutions – Binary alloys, ternary alloys. Iron car prmations. Classification of steel and cast iron - micro yield point phenomenon, cold/hot working, recovery, hening of metals.	structure, prop	perties and application
UNIT	III HEAT TREATMENT OF MATERIALS		11
harden superin carbur Non F and to	Treatment- Definition – Full annealing, stress reli ing and tempering of steel. Isothermal transform mposed on I.T. diagram CCR Hardenability, Austempo- ising, nitriding, cyaniding, carbonitriding – Flame an errous Metals- Effect of alloying additions on steel (Most of steels – HSLA. Gray, White malleable, spheroidal -C r alloys – Brass, Bronze and Cupronickel.	mation diagra ering, martemp d Induction ha In, Si, Cr, Mo,	ums –cooling curves bering.Case hardening, ardening. Ferrous and V Ti& W) - stainless
UNIT	IV NON METALLIC MATERIALS		8
Proper PEEK	Ietallic Materials- Polymers – types of polymer, commu- ties and applications of PE, PP, PS, PVC, PMMA, PET PTFE Polymers. Urea and Phenol formaldehydes and perties and applications.	, PC, PA, ABS	S, PI, PAI, PPO, PPS,
UNIT	V METALLURGY & SMART MATERIALS		8
Powde Proper reinfor Metall Sol Ge	r metallurgy, Manufacturing Process, Compacting ties of Powder processed materials, high energy ced composites, Metal matrix composites, preparation p ic glasses- preparation of metallic glasses- properties – els – ball Milling – properties of nanoparticles and ap ubes (CNT)-structure-properties-applications of the Cl	compaction. I properties and applications o pplications of r	Vacuum processing. Fibre and particulate uses. f the metallic glasses -
ТЕХТ	BOOKS		
Pre	gineering Materials: Properties and selection/ Kenneth ntice Hall.		Michael K. Budinski/
	gineering materials / R K Rajput / S Chand and compan formation and Fracture Mechanics of Engineering Mate	•	rtzberg/ John Wiley &
	18.		

5. Materials Science and Engineering /Raghavan/ Prentice-Hall of India.

### **REFERENCE BOOKS**

- 1. Koch, C. C. Nanostructured materials: processing and applications: William Andrew Pub.
- 2. James F Shackelford, S "Introduction to materials Science for Engineers", 6 th Macmillan Publishing Company, New York, 2004
- 3. William D CallisterJr, "Materials Science and Engineering An Introduction", John Wiley and Sons Inc., 6 th edition, New York, 2003
- 4. Jayakumar S, "Materials Science", RK Publishers, Coimbatore, 2004
- 5. Bolton, W., Engineering materials technology: Butterworth-Heinemann.

### **E** – **References**

- 1. NPTEL courses, http://www.nptel.iitm.ac.in/courses.php?disciplineId=112: related web and video resources under Mechanical Engineering &Metallurgy and Material Science categories.
- 2. http://www.intechopen.com/books.

### LECTURE: 45 TUTORIAL: 0 PRACTICAL: 0TOTAL HOURS:45

						0		Scaled
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	to 0,1,2 and 3
PO ₁	2	3	3	2	3	2	15	3
PO ₂	2	3	2	3	2	2	14	3
PO ₃	3	1	1	1	3	1	10	2
PO ₄	3	1	1	3	3	2	13	3
PO ₅	1	1	1	1	1	1	6	1
PO ₆	1	0	0	0	1	0	2	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	2	1	1	1	1	1	7	2
PO ₉	3	1	2	1	3	2	11	2
PO ₁₀	3	2	3	2	3	2	14	3
PO ₁₁	1	3	1	3	2	1	12	2
PO ₁₂	3	2	3	2	1	1	12	2
PSO ₁	2	3	3	3	2	2	15	3
<b>PSO</b> ₂	2	1	1	2	2	3	11	2

### XAS302- Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COUR	SE CODE	XAS303				L	Т	Р	С	
	SE NAME	SOLID MECHA		AND	FLUID	3	1	0	4	
	EQUISITES	ENGINE	ERING MECHAN	ICS		L	Т	P	H	
	<u>= 4:0:0</u>					3	1	0	4	
	SE OBJECTIVI							•		
con • To	nbined loads.		e behaviour of mate			-	-			
COUR	SE OUTCOMES	5			DOM	IAIN	[	LEV	<b>EL</b>	
CO1	<i>express</i> the string isotropic materia	tress-strain als; <i>explain</i>	stress and strain at relationship for shear force and ben ply supported beam	homogeno ding mom	ous, Com	itive		Remember, Understand, Apply		
CO2	the beam specin	nen, <i>Expres</i>	nd shear stress in b s deflection equation	1	Cogi	itive		Under Ap	ply	
CO3	stresses; <i>explain</i> wall spherical an	<i>n</i> the stress nd cylindric	ue to torsion; <i>Clas</i> : ses, strains associate al pressure vessels.	ed with th	in- Cogn	Cognitive		Understand Apply, Analyze		
CO4	<b>Describe</b> fluid pand kinematics.	properties; I	Express the ideas of	f fluid stat	tics Cogn	Cognitive			Remember, Understand	
CO5					Cognitive Understand					
CO6	<i>Compare</i> and a reciprocating pu		performance of ce	ntrifugal a	and Cogn	itive		Evaluate, Remember		
UNIT I			S AND STRAIN O						9L+3]	
constan support	ts and their relat ed.	ionship –Sł	ss and Strain – Hool near force and bend	ing mome				lever,	Simply	
		ght beams-S	ECTIONS IN BEA Shear stresses in ben ethod		ams –Defle	ction	of b		9L+3 Double	
UNIT I	II TORSIO	N & BI AX	IAL STRESSES						9L+3]	
			resses and twist in a hell under internal p							
UNIT I	<b>IV FLUID P</b>	ROPERTII	ES						9L+3	
Classifi centre	cation of fluids -	- dimension essure meas	s and units - syster surement by manor						's law	
UNIT			R&HYDRAULIC						9L+3]	
	r boundary layer	- turbulent b	ooundary layer - Cer	trifugal pu	imps and re	cipro	ocatir	ig pun	np- slip	

TEX	AT BOOKS
1.	Rajput R K, Edition -VI "Strength of Materials" Publisher, S Chand, 2015.
2.	L S Srinath, "Advanced Mechanics of Solids" McGraw Hill Education, 2010.
3.	Bansal, R.K., "Fluid Mechanics and Hydraulics Machines", Laxmi Publications (P) Ltd., New Delhi, 2013.
4.	Frank.M. White., "Fluid mechanics", McGraw Hill series, Seventh Edition,2011.
REF	ERENCE BOOKS
1.	Timoshenko, S. P, "Elements of Strength of Materials", Tata McGraw – Hill, New Delhi, 1997.
2.	Nash W. A, "Theory and problems in Strength of Materials", Schaum Outline Series, McGraw – Hill Book Co, New York, 1995.

E – K	eterences	
1.	nptel.ac.in/courses/112107147	
2.	https://nptel.ac.in/courses/112105171	
	LECTURE: 45 TUTORIAL: 15	PRACTICAL: 0TOTAL HOURS:60

XAS303 - Mapping of CO with PO										
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3		
PO ₁	3	2	1	1	3	2	12	2		
PO ₂	2	1	3	3	2	2	13	2		
PO ₃	1	2	2	2	2	2	11	2		
PO ₄	0	1	2	2	2	2	9	2		
PO ₅	0	1	2	2	3	1	9	2		
PO ₆	0	0	1	1	1	1	4	1		
PO ₇	0	0	0	0	0	0	0	0		
PO ₈	0	0	0	0	0	0	0	0		
PO ₉	0	0	0	0	0	1	1	0		
PO ₁₀	0	0	0	0	0	0	0	0		

### XAS303 - Mapping of CO with PO

PO ₁₁	0	0	0	0	1	1	2	1
PO ₁₂	0	0	0	0	0	1	1	0
PSO ₁	0	0	0	2	2	2	6	1
PSO ₂	0	0	2	1	1	1	5	1

 $1\text{-}6 \rightarrow 1, 7\text{-}12 \rightarrow 2, 13\text{-}18 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XEM304	L	Т	Р	С
COURSE NAME	ENGINEERING MECHANICS	3	1	0	4
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A= 3.5:0.25:0.25	5	3	1	0	4

**COURSE OBJECTIVES** 

Upon successful completion of the course, student will have:

• Ability to apply mathematics, science, and engineering.

- Ability to design and conduct experiments, as well as to analyze and interpretdata.
- Ability to identify, formulate, and solve engineeringproblems.
- Ability to apply modern engineering tools, techniques and resources to solve complex mechanical engineering activities with an understanding of thelimitations.
- Ability to comprehend the thermodynamics and their corresponding processes that influence the behavior and response of structural components.
- Ability to apply principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations) and thermodynamics to model, analyze, design, and realize physical systems, components, orprocesses.

COUR	SE OUTCOMES	DOMAIN	LEVEL	
CO1	<i>Explain</i> the principles forces, laws and theirapplications.	Cognitive	Understanding, Apply	
CO2	<i>Classification</i> of friction, and <i>apply</i> the forces in Trusses and beams.	Cognitive	Understanding, Apply	
CO3	<i>Explain</i> and <i>Apply</i> moment of Inertia and Virtual work	Cognitive Understanding, Apply		
CO4	Outline and Examine Dynamics	Cognitive	Understanding, Apply	
CO5	<i>Explain</i> free and forced vibration	Cognitive Remember, Understanding		

### UNIT I INTRODUCTION TO ENGINEERING MECHANICS

9L+3T

Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static indeterminacy.

### UNIT II FRICTION AND BASIC STRUCTURAL ANALYSIS

9L+3T

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines.

### UNIT III CENTROID , CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD

9L+3T

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

# UNIT IVREVIEW OF PARTICLE DYNAMICS AND INTRODUCTION TO<br/>KINETICS OF RIGID BODIES9L+3T

Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton's 2nd law (rectangular, path, and polar coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D'Alembert's principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid bodyrotation.

### UNIT V MECHANICAL VIBRATIONS

9L+3T

Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums.

## TEXT BOOKS

1. Hisrich, 2016, Entrepreneurship, Tata McGraw Hill, New Delhi.

2. S.S.Khanka, 2013, Entrepreneurial Development, S.Chand and Company Limited, New Delhi. **REFERENCE BOOKS** 

1. Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra ,2nd Edition.

- 2. Prasanna Chandra, 2009, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill.
- 3. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.
- 4. Arya Kumar,2012, Entrepreneurship: Creating and Leading an Entrepreneurial Organisation, Pearson Education India.
- 5. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage Learning India.
- Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad.

### **E** – **References**

- 1. Jeff Hawkins, " Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

### LECTURE: 45 TUTORIAL: 15 PRACTICAL: 0 TOTAL HOURS:60

XEIVI304 - Mapping of CO with PO										
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3			
PO ₁	1	1	1	1	1	5	1			
PO ₂	2	2	2	2	3	11	3			
PO ₃	3	3	3	3	3	15	3			
PO ₄	1	1	1	1	1	5	1			
PO ₅	0	0	0	0	0	0	0			
PO ₆	3	3	3	3	3	15	3			
PO ₇	1	1	1	1	1	5	1			
PO ₈	0	3	0	1	3	7	2			
PO ₉	3	3	3	3	3	15	3			
<b>PO</b> ₁₀	1	1	1	3	3	9	2			
<b>PO</b> ₁₁	2	2	2	3	3	12	3			
<b>PO</b> ₁₂	2	2	2	3	3	12	3			
PSO ₁	2	2	2	3	3	12	3			
<b>PSO</b> ₂	2	2	2	3	3	12	3			

### XEM304 - Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XUM305	L	Т	Р	С
COURSE NAME	ENTREPRENEURSHIP DEVELOPMENT	3	0	0	3
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A= 3:0:0		3	0	0	3
<b>COURSE OBJECTI</b>	VES				

• The purpose of the course is that the students acquire necessary knowledge and skills required for organizing and carrying out entrepreneurial activities.

• To develop the ability of analysing and understanding business situations in which

entrepreneurs act and to master the knowledge necessary to plan entrepreneurial activities.

• The objective of the course is, further on, that the students develop the ability of analysing various aspects of entrepreneurship – especially of taking over the risk, and the specificities as well as the pattern of entrepreneurship development and, finally, to contribute to their entrepreneurial and managerial potentials.

COUR	RSE OUTCOMES	DOMAIN	LEV	EL						
	<b>Recognise</b> and <b>describe</b> the personal traits of an	Affective	Receiv	ing						
CO1	entrepreneur. Cognitive Understanding									
000	Determinethe new venture ideas and analyseCognitiveUnderstandingUnderstandingUnderstanding									
CO2	Pfeasibility report.AnalysingDevelop the business plan and analyse the plan as an individual or in team.Affective CognitiveReceiving AnalysingDescribe various parameters to be taken intoCognitiveUnderstanding									
<b>CO1</b>	Teasibility report.AnalysingDevelop the business plan and analyse the plan as anAffectiveReceiving									
003										
	Describe various parameters to be taken into	Cognitive	Understa	inding						
	business.									
0.0.	Explain the technological management and	Cognitive	Understa	inding						
CO5	Intellectual Property Rights									
UNIT			6	9						
Definition of Entrepreneurship; competencies and traits of an entrepreneur; factors affecting										
		Entrepreneurship Development; Role of Family and Society ; Achievement Motivation;								
Entrep	preneurship Development; Role of Family and So	ciety ; Achi	evement M	otivation;						
Entrep		ciety ; Achi	evement Mo	otivation;						
Entrep Entrep	oreneurshipDevelopment;RoleofFamilyandSocoreneurshipas a career andnational development.IINEW PRODUCT DEVELOPMENTANDVE	ENTURE CR	EATION	9						
Entrep Entrep UNIT Ideation	oreneurship Development; Role of Family and Some preneurship as a career and national development.IINEW PRODUCT DEVELOPMENT AND VE on to Concept development; Sources and Criteria	ENTURE CR	EATION of Product	9; market						
Entrep Entrep UNIT Ideation assession	IINEW PRODUCT DEVELOPMENT AND VEon to Concept development; Sources and Criteriament ; Feasibility Report ;Project Profile; processes invo	ENTURE CR	EATION of Product	9; market						
Entrep Entrep UNIT Ideation assessing formal	Development;Role of Family and Sourceoreneurship as a career and national development.IINEW PRODUCT DEVELOPMENT AND VEon to Concept development;Sources and Criteriament ;Feasibility Report ;Project Profile; processes involities;Ownership;Case Study.	ENTURE CR	EATION of Product	9 ; market ure; legal						
Entrep Entrep Ideatic assess formal UNIT	IINEW PRODUCT DEVELOPMENT AND VE or to Concept development; Sources and Criteria ment; Feasibility Report; Project Profile; processes invo lities; Ownership; Case Study.IIIENTREPRENEURIAL FINANCE	ENTURE CR for Selection lved in startin	EATION of Product g a new vent	9 ; market ure; legal 9						
Entrep Entrep UNIT Ideation assess formal UNIT Finance	IINEW PRODUCT DEVELOPMENT AND VE or to Concept development; Sources and Criteria ment; Feasibility Report; Project Profile; processes invo lities; Ownership; Case Study.IIIENTREPRENEURIAL FINANCE cial forecasting for a new venture; Finance mobilization;	ENTURE CR for Selection lved in startin Business plan	EATION of Product g a new vent	9 ; market ure; legal 9 Sources						
Entrep Entrep UNIT Ideation assess formal UNIT Finance	IINEW PRODUCT DEVELOPMENT AND VE or to Concept development; Sources and Criteria ment; Feasibility Report; Project Profile; processes invo lities; Ownership; Case Study.IIIENTREPRENEURIAL FINANCE cial forecasting for a new venture; Finance mobilization; ancing, Angel Investors and Venture Capital; Government	ENTURE CR for Selection lved in startin Business plan at support in s	EATION of Product g a new vent preparation; startup promo	9 ; market ure; legal 9 Sources						
Entrep Entrep Ideatic assess formal UNIT Financ of Fina UNIT	IINEW PRODUCT DEVELOPMENT AND VE or to Concept development; Sources and Criteria ment; Feasibility Report; Project Profile; processes invo lities; Ownership; Case Study.IIIENTREPRENEURIAL FINANCE cial forecasting for a new venture; Finance mobilization; ancing, Angel Investors and Venture Capital; Government IVIVLAUNCHING OF SMALL BUSINESS AND	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE	EATION of Product g a new vent preparation; startup promo	9 ; market ure; legal 9 Sources otion. 9						
Entrep Entrep UNIT Ideation assess formal UNIT Finance of Fina UNIT Operat	IINEW PRODUCT DEVELOPMENT AND VE or to Concept development; Sources and Criteria ment; Feasibility Report; Project Profile; processes invo lities; Ownership; Case Study.IIIENTREPRENEURIAL FINANCE cial forecasting for a new venture; Finance mobilization; ancing, Angel Investors and Venture Capital; Government	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr	EATION of Product g a new vent preparation; startup promo MENT roduct Launc	9 ; market ure; legal 9 Sources otion. 9 hing –						
Entrep Entrep Ideatic assess formal UNIT Finance of Fina UNIT Operat Incuba	IINEW PRODUCT DEVELOPMENT AND VE on to Concept development; Sources and Criteria ment; Feasibility Report; Project Profile; processes invo lities; Ownership; Case Study.IIIENTREPRENEURIAL FINANCE cial forecasting for a new venture; Finance mobilization; ancing, Angel Investors and Venture Capital; Government IVIVLAUNCHING OF SMALL BUSINESS AND tions Planning - Market and Channel Selection - Growth antion, Monitoring and Evaluation of Business - Preventin ess Units.	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr g Sickness and	EATION of Product g a new vent preparation; startup promo MENT roduct Launc d Rehabilitati	9 ; market ure; legal 9 Sources otion. 9 hing – ion of						
Entrep Entrep Ideatic assess formal UNIT Finance of Fina UNIT Operat Incuba	oreneurship Development; Role of Family and Source preneurship as a career and national development.IINEW PRODUCT DEVELOPMENT AND VE pointo Concept development; Sources and Criteria ment; Feasibility Report; Project Profile; processes invo lities; Ownership; Case Study.IIIENTREPRENEURIAL FINANCE cial forecasting for a new venture; Finance mobilization; ancing, Angel Investors and Venture Capital; Government IVIVLAUNCHING OF SMALL BUSINESS AND tions Planning - Market and Channel Selection - Growth ation, Monitoring and Evaluation of Business - Preventiness Units.VTECHNOLOGY MANAGEMENT, IPR POR	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr g Sickness and	EATION of Product g a new vent preparation; startup promo MENT roduct Launc d Rehabilitati	9 ; market ure; legal 9 Sources otion. 9 hing –						
Entrep Entrep Ideatic assessi formal UNIT Finance of Fina Operat Incuba Busine UNIT	Development;RoleofFamilyandSocIINEW PRODUCT DEVELOPMENT AND VEontoConceptdevelopment;SourcesandCriteriaontoConceptdevelopment;SourcesandCriteriaontoConceptdevelopment;SourcesandCriteriaontoConceptdevelopment;SourcesandCriteriaontoConceptdevelopment;SourcesandCriteriaontoConceptdevelopment;Project Profile;processes involities;Ownership;CaseStudy.IIIENTREPRENEURIAL FINANCEcial forecasting for a new venture;Finance mobilization;ancing,Angel Investors and Venture Capital;GovernmentIVLAUNCHING OF SMALL BUSINESS ANDItons Planning - Market and Channel Selection - GrowthGrowthation, Monitoring and Evaluation of Business - Preventiness Units.VTECHNOLOGY MANAGEMENT, IPR POR PRODUCT VENTURE	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr g Sickness and TFOLIO FO	EATION of Product g a new vent preparation; startup promo MENT roduct Launc d Rehabilitati R NEW	9 ; market ure; legal 9 Sources otion. 9 hing – ton of 9						
Entrep Entrep Ideation assessing formal UNIT Finance of Fina UNIT Operate Incuba Busine UNIT	IINEW PRODUCT DEVELOPMENT AND VE on to Concept development; Sources and Criteria ment; Feasibility Report; Project Profile; processes invo lities; Ownership; Case Study.IIIENTREPRENEURIAL FINANCE cial forecasting for a new venture; Finance mobilization; ancing, Angel Investors and Venture Capital; Government IVIVLAUNCHING OF SMALL BUSINESS AND tions Planning - Market and Channel Selection - Growth ation, Monitoring and Evaluation of Business - Preventin tess Units.VTECHNOLOGY MANAGEMENT, IPR POR PRODUCT VENTUREology management; Impact of technology on society and	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr g Sickness and TFOLIO FO ad business; R	EATION of Product g a new vent preparation; startup promo MENT roduct Launc d Rehabilitati R NEW ole of Gover	9 ; market ure; legal Sources otion. 9 hing – ion of 9						
Entrep Entrep Entrep Ideatic assessi formal UNIT Finance of Fina Operat Incuba Busine UNIT Techne suppor	Development;RoleofFamilyandSocIINEW PRODUCT DEVELOPMENT AND VEOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;Froject Profile;processes involutionIIIENTREPRENEURIAL FINANCEEntreCaseStudy.IIIENTREPRENEURIAL FINANCECaseStudy.Cial forecasting for a new venture;Finance mobilization;ancing, Angel Investors and Venture Capital;GovernmentIVLAUNCHING OF SMALL BUSINESS ANDItions Planning - Market and Channel Selection - Growthation, Monitoring and Evaluation of Business - Preventiness Units.VVTECHNOLOGY MANAGEMENT, IPR POR PRODUCT VENTUREology management;Impact of technology on society and rting Technology Development and IPR protection;	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr g Sickness and TFOLIO FO ad business; R	EATION of Product g a new vent preparation; startup promo MENT roduct Launc d Rehabilitati R NEW ole of Gover	9 ; market ure; legal Sources otion. 9 hing – ion of 9						
Entrep Entrep Entrep Ideatic assess formal UNIT Financ of Fina UNIT Operat Incuba Busine UNIT Techno suppor and Ot	Development;RoleofFamilyandSocoreneurship as a career and national development.IINEW PRODUCT DEVELOPMENT AND VEon to Concept development;Sources and Criteriament ;Feasibility Report ;Project Profile; processes involities;Ownership; Case Study.IIIENTREPRENEURIAL FINANCEcial forecasting for a new venture;Finance mobilization;ancing,Angel Investors and Venture Capital;GovernmentIVLAUNCHING OF SMALL BUSINESS ANDtions Planning - Market and Channel Selection - Growthation,Monitoring and Evaluation of Business - Preventiness Units.VTECHNOLOGY MANAGEMENT, IPR POR PRODUCT VENTUREology management;Impact of technology on society and rting Technology Development and IPR protection; Entre ther Support Services.	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr g Sickness and TFOLIO FO ad business; R	EATION of Product g a new vent preparation; startup promo MENT roduct Launc d Rehabilitati R NEW ole of Gover	9 ; market ure; legal Sources otion. 9 hing – ion of 9						
Entrep Entrep Entrep Ideatic assess formal UNIT Financ of Fina UNIT Operat Incuba Busine UNIT Techno suppor and Ot	Development;RoleofFamilyandSocIINEW PRODUCT DEVELOPMENT AND VEOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;SourcesandCriteriaOntoConceptdevelopment;Froject Profile;processes involutionIIIENTREPRENEURIAL FINANCEEntreCaseStudy.IIIENTREPRENEURIAL FINANCECaseStudy.Cial forecasting for a new venture;Finance mobilization;ancing, Angel Investors and Venture Capital;GovernmentIVLAUNCHING OF SMALL BUSINESS ANDItions Planning - Market and Channel Selection - Growthation, Monitoring and Evaluation of Business - Preventiness Units.VVTECHNOLOGY MANAGEMENT, IPR POR PRODUCT VENTUREology management;Impact of technology on society and rting Technology Development and IPR protection;	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr g Sickness and TFOLIO FO ad business; R	EATION of Product g a new vent preparation; startup promo MENT roduct Launc d Rehabilitati R NEW ole of Gover	9 ; market ure; legal Sources otion. 9 hing – ion of 9						
Entrep Entrep Entrep Ideation assessific formal UNIT Finance of Fina UNIT Operate Incuba Busine UNIT Techno support and Ot TEXT 1. Hist	Development;RoleofFamilyandSocoreneurship as a career and national development.IINEW PRODUCT DEVELOPMENT AND VEon to Concept development;Sources and Criteriament ;Feasibility Report ;Project Profile; processes involities;Ownership; Case Study.IIIENTREPRENEURIAL FINANCEcial forecasting for a new venture;Finance mobilization;ancing,Angel Investors and Venture Capital;GovernmentIVLAUNCHING OF SMALL BUSINESS ANDtions Planning - Market and Channel Selection - Growthation,Monitoring and Evaluation of Business - Preventiness Units.VTECHNOLOGY MANAGEMENT, IPR POR PRODUCT VENTUREology management;Impact of technology on society and rting Technology Development and IPR protection; Entre ther Support Services.	ENTURE CR for Selection lved in startin Business plan at support in s ITS MANGE Strategies - Pr g Sickness and TFOLIO FO ad business; R epreneurship I elhi.	EATION of Product g a new vent preparation; startup promo MENT roduct Launc d Rehabilitati R NEW ole of Gover Development	9 ; market ure; legal 9 Sources otion. 9 hing – ton of 9 rnment in Training						

### **REFERENCE BOOKS**

1. Mathew Manimala, 2005, Entrepreneurship Theory at the Crossroads, Paradigms & Praxis, Biztrantra ,2nd Edition.

- 2. Prasanna Chandra, 2009, Projects Planning, Analysis, Selection, Implementation and Reviews, Tata McGraw-Hill.
- 3. P.Saravanavel, 1997, Entrepreneurial Development, Ess Pee kay Publishing House, Chennai.

4. Arya Kumar, 2012, Entrepreneurship: Creating and Leading an Entrepreneurial

Organisation, Pearson Education India.

5. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship: A South Asian perspective, Cengage Learning India.

6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Suggested Reading / Reference Material for Entrepreneurship Development Programmes (EDP/WEDP/TEDP), EDI Publication, Entrepreneurship Development Institute of India, Ahmedabad.

### **E** – **References**

1. Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills

2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, <u>https://www.udemy.com/entrepreneurship-from-idea-to-launch</u>

LECTURE: 45 TUTORIAL: 0 PRACTICAL: 0 TOTAL HOURS:45

XUM305- Mapping of CO with PO										
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3			
PO ₁	1	1	1	1	1	5	1			
PO ₂	2	2	2	2	3	11	3			
PO ₃	3	3	3	3	3	15	3			
PO ₄	1	1	1	1	1	5	1			
PO ₅	0	0	0	0	0	0	0			
PO ₆	3	3	3	3	3	15	3			
PO ₇	1	1	1	1	1	5	1			
PO ₈	0	3	0	1	3	7	2			
PO ₉	3	3	3	3	3	15	3			
PO ₁₀	1	1	1	3	3	9	2			
PO ₁₁	2	2	2	3	3	12	3			
PO ₁₂	2	2	2	3	3	12	3			

### XUM305- Mapping of CO with PO

PSO ₁	2	2	2	3	3	12	3
PSO ₂	2	2	2	3	3	12	3

 $1\text{-}6 \rightarrow 1, 7\text{-}12 \rightarrow 2, 13\text{-}18 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS306	L	Т	Р	С
COURSE NAME	ENGINEERING THERMODYNAMICS	2	1	0	3
PREREQUISITES	NIL	L	Т	Р	Н
C:P:A= 3:0:0		2	2	0	4
<b>COURSE OBJECT</b>	IVES				

• To give a brief background of application of various laws of thermodynamics and its application in heat transfer, refrigeration and air-conditioning, jet propulsion system.

COU	RSE OUTCOMES	DOMAIN	LEVEL
CO ₁	<i>Describe</i> the laws of thermodynamics and their application to a wide range of systems.	Cognitive	Remember
CO ₂	<i>Analyze</i> the work and heat interactions associated with a prescribed process path and to perform thermodynamic analysis of a flow system. An ability to evaluate entropy changes and familiarity with calculations of the efficiencies of heat engines and other related engineering devices.	Cognitive	Analyze
CO ₃	<i>Assess</i> the efficiency and mean effective pressure of different thermodynamic air standard cycles.	Cognitive	Evaluate
CO ₄	<i>Describe</i> the pure substance (an ideal gas) and its applications in various flow and non flow process, and ability to evaluate the efficiencies.	Cognitive	Remember
CO ₅	<i>Describe</i> the construction and working principle of different types of compressors.	Cognitive	Remember
CO ₆	<i>Compare</i> the different refrigeration and air-conditioning systems and able to calculate the COP /cooling load for various applications.	Cognitive	Evaluate

UNIT I	BASIC THERMODYNAMICS	6L+6T							
Systems, Zeroth, First and Second laws - concept of entropy change in non-flow processes -									
SFEE equat	SFEE equations [steady flow energy equation] - Heat engines - Refrigerators and heat								
pumps - Bas	ic thermodynamic relations.								
UNIT II	AIR STANDARD CYCLES AND IC ENGINES	6L+6T							
Otto, Diesel	, Dual and Brayton cycles - Air standard efficiency -Mean effective pr	essure –							
Two and for	ır stroke IC Engines – P-V & T-S diagrams.								
	-								
UNIT III	GAS TURBINES	6L+6T							
Open and c	losed cycle gas turbines – Ideal and actual cycles – Brayton cycle – Cy	cle with							

Open and closed cycle gas turbines – Ideal and actual cycles – Brayton cycle – Cycle with reheat, inter-cooling and regeneration – Application of gas turbines in aviation – Velocity diagrams.

UNIT IV	AIR	COMPRESSORS
---------	-----	-------------

6L+6T

Positive displacement compressors – Construction and working principle of centrifugal, diagonal (mixed flow) and axial compressors.

UN	V REFRIGERATION AND AIR CONDITIONING 6L+61
	bles of refrigeration, Air conditioning - Heat pumps - Vapour compression - Vapour
	tion types - Coefficient of performance, Properties of refrigerants - Basic functional
	nce between refrigeration and air conditioning - Various methods of producing
refri	rating effects (RE).
ID	
LE	URE:30 TUTORIAL: 30 TOTAL: 60 Hours
TE	BOOKS
1.	ag P K, "Basic and Applied Engineering Thermodynamics". Tata McGraw Hill, New
	elhi, 2012.
2.	engel&Boles, "Thermodynamics – An Engineering Approach", 7th Ed., McGraw
	ill, 2011.
RE	RENCE BOOKS
1.	ogers and Mayhew, "Engineering Thermodynamics – Work and Heat Transfer"
1.	ddision Wesley, New Delhi, 1999.
2.	astop and McConkey, "Applied Thermodynamics", Addision Wesley, New Delhi,
	999.
3.	ankaar B K, "Thermal Engineering", Tata McGraw Hill, New Delhi, 1998.
<b>E</b> –	ferences
1.	tps://nptel.ac.in/courses/112105123/

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /6
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	3	3	18	3
PO ₃	0	2	0	0	2	2	6	1
PO ₄	1	1	1	1	1	1	6	1
PO ₅	0	0	0	0	0	0	0	0
PO ₆	1	1	1	1	1	1	6	1
PO ₇	2	2	2	2	2	2	12	2
PO ₈	0	0	0	0	0	0	0	0

### XAS306 - Mapping of CO with PO

PO ₉	2	2	2	2	2	2	12	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	1	1	1	1	1	1	6	1
PSO ₂	0	0	0	0	0	0	0	0
Total	14	16	14	14	16	16	90	15

COURSE CODE	XAS401	L	Τ	Р	С
COURSE NAME	AERODYNAMICS I	3	0	2	4
PREREQUISITES	SOLID MECHANICS AND FLUID MECHANICS	L	Т	Р	Н
C:P:A= 3:1:0		3	0	2	5
<b>COURSE OBJECT</b>	IVES				

• To understand the behaviour of airflow over bodies with particular emphasis on airfoil sections in the incompressible flow regime.

COUF	<b>RSE OUTCOMES</b>	DOMAIN	LEVEL
CO1	<i>Recall</i> the history of aviation and <i>Study</i> of	Cognitivo	Remember
COI	basicaerodynamics.	Cognitive	Understand
	Evenlain various flows and Calibrate the wind	Cognitive	Understand
CO2	<i>Explain</i> various flows and <i>Calibrate</i> the wind	U	Analyze
	tunnel	Psychomotor	Mechanism
	Express combinational stream functions for	Comitivo	Understand
CO3	various flows and <i>Calibrate</i> pressure	Cognitive	Analyze
	distribution over Cylinder.	Psychomotor	Mechanism
		Comitivo	Understand
CO4	<i>Explain</i> Kutta Transformations and <i>Calibrate</i>	Cognitive	Analyze
	pressure distribution over various models	Psychomotor	Mechanism
	Shotah theflow viewalization even the models	Comitivo	Understand
CO5	Sketch theflow visualization over the models,	Cognitive	Analyze
COS	<i>Explain</i> Lifting line theory and <i>Present</i> solution	Psychomotor	Mechanism
	to real time problems.	Affective	Respond
CO6	Display the Boundary Layer Flow over models	Cognitive	Remember
	and <i>Discuss</i> Navier stokes's Equation.	Psychomotor	Understand

### UNIT I BASICS OF AERODYNAMICS

History of aviation - classifications of aircrafts - Components of an airplane- Physical properties and structure of the atmosphere– Forces and moments acting in Aircraft.

#### UNIT II TWO DIMENSIONAL INCOMPRESSIBLE FLOWS

Elementary flows – uniform flow, source, sink, vortex and their combinations, Pressure and velocity distributions on bodies with and without circulation in ideal and real fluid flows. 8

10

12

8

### **CONFORMAL MAPPING** UNIT III

Aerofoil terminologies - Classification of aerofoil - Transformation from circle to various shapes - Karman - Trefftz profiles - ideal and real flow - Magnus effect - D' Alembert paradox.

### UNIT IV **AIRFOIL AND WING THEORY**

Thin aerofoil theory and its applications- concept of vortex flow - Vortex line, Horse shoe vortex, Biot Savart law, Lifting line theory and its limitations.

### **VISCOUS FLOWS** UNIT V

Concepts of boundary Layer- Blasius theorem- displacement, Momentum thickness - Flow over a flat plate.

### TEXT BOOKS

- 1. Anderson, J.D., "Fundamentals of Aerodynamics", McGraw-Hill Book Co., New York, 1998.
- Clancey, L.J., "Aerodynamics", Pitman, 1986. 2.

## **REFERENCE BOOKS**

- 1. Houghton, E.L., and Carruthers, N.B., "Aerodynamics for Engineering students", Edward Arnold Publishers Ltd., London, 1989.
- Milne Thomson, L.H., "Theoretical aerodynamics", Macmillan, 1985. 2.

## **E** – **References**

https://nptel.ac.in/courses/101105059/ 1.

## **List of Experiments**

1. Flow visualization in water flow channel.

2. Flow visualization in smoke tunnel

3. Study of Low speed subsonic wind tunnel

4. Plot of rotor speed Vs velocity in a subsonic wind tunnel.

5. Find the Pressure distribution over circular cylinder and plot it.

6. Enumerate and plot Pressure distribution over Symmetrical airfoil and estimation of CL and C_D.

7. Enumerate and plot Pressure distribution over Un Symmetrical airfoil and estimation of CL and C_D.

8. Enumerate and plot Pressure distribution over Cambered airfoil and estimation of CL and C_D.

9. Study of Schlieren system to visualize shock.

**Tutorial:0** 10. Study of Shadow graph system to visualize shock. Lecture: 45 Practical: 30 **Total: 75 Hours** 

### XAS401 - Mapping of CO with PO

CO Vs PO CO1 CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2
------------------	-----	-----	-----	-----	-------	--------------------

								and 3
PO ₁	3	3	3	3	3	3	15	2
PO ₂	2	3	3	3	3	3	16	3
PO ₃	1	2	2	3	3	3	11	2
PO ₄	3	3	3	3	3	3	15	2
PO ₅	0	2	2	2	3	3	9	1
PO ₆	0	3	3	3	2	2	13	2
<b>PO</b> ₇	1	2	2	2	2	2	9	1
PO ₈	0	2	2	0	0	0	4	1
PO ₉	0	3	3	0	0	0	6	1
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	3	3	3	3	2	2	16	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	1	1	10	2

COURSE CODE	XAS402	L	Т	Р	С				
COURSE NAME	AIRCRAFT STRUCTURES I	3	1	0	4				
PREREQUISITES	SOLID AND FLUID MECHANICS	L	Т	Р	Н				
C:P:A= 4:0:0		3	1	0	4				
<b>COURSE OBJECTI</b>	COURSE OBJECTIVES								

• To study the behaviour of various aircraft structural components under different types of loads.

COUI	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Recall</i> engineering mechanics and <i>explain</i> fuselage and wing structures.	Cognitive	Remember, Understand
CO2	<i>Draw</i> and <i>explain</i> statically determinate and indeterminate structures.	Cognitive	Remember, Understand
CO3	Discuss and analyze the behavior of elastic structures	Cognitive	Understand,

	•	ed to combined loads, including bending, torsion and			Analyze			
	axial lo							
	-	and Use Euler's formula for various columns to			Understand,			
CC		it critical load. <i>Distinguish</i> Euler's formula and	Cognit	ive	Apply			
		e's formula.						
CC	05 Explain	<i>t</i> the real time application of columns.	Cognit	ive	Understand			
	<i>List</i> the theories of failure and <i>explain</i> themand then <i>utilize</i> Cognitive, Understan							
CC	<b>b6</b> the fail	are theories to investigate the engineering structures.	Psychom	notor	Set, Receive			
	Uses of	failure theories in Aircraft structures.	, Affect	ive	Sei, Receive			
UN	ITI	BASICS OF AIRCRAFT STRUCTURES			8L			
Fus	selage struct	ure: truss type, monocoque and semi- monocoque – W	ving struct	ure – I	Empennage			
	icture.		C		1 0			
UN	II TI	STATICALLY DETERMINATE AND IND	ETERMI	NATI	E 10L+4T			
		STRUCTURES						
An	alysis of p	lane truss using method of joints- Propped Canti	ilever- Fiz	ked-Fi	ixed beams -			
Cla	apeyron's Th	ree Moment Equation.						
UN		ENERGY METHODS			8L+3T			
			rliano's th	aoran				
Su	and Lnergy							
Red		due to axial, bending and Torsional loads – Castig	snano s u					
Red		orem - Unit load method.		leoren				
	ciprocal the	orem - Unit load method.						
UN	ciprocal the	orem - Unit load method. COULMNS			11L+4T			
UN Col	ciprocal theo NIT IV lumns with	orem - Unit load method.	kine's for	nula -	11L+4T Column with			
UN Col init	ciprocal theo NIT IV lumns with	orem - Unit load method. COULMNS various end conditions – Euler's Column curve – Ran	kine's for	nula -	11L+4T Column with			
UN Col init	Ciprocal the NIT IV lumns with tial curvatur	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES	kine's forn n – applica	nula - tion o	11L+4T Column with of columns. 8L+3T			
UN Col init UN Tyj	Ciprocal the NIT IV lumns with tial curvatur NIT V pes of failur	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column	kine's forr n – applica theory – S	nula - tion o hear s	11L+4T Column with of columns. 8L+3T stress theory –			
UN Col init UN Tyj	Ciprocal the NIT IV lumns with tial curvatur NIT V pes of failur	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain	kine's forr n – applica theory – S	nula - tion o hear s	11L+4T Column with of columns. 8L+3T stress theory –			
UN Col init UN Typ She	Ciprocal the NIT IV lumns with tial curvatur NIT V pes of failur	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain         ergy theory – Strain energy theory –Fatigue and Creep	kine's forr n – applica theory – S	nula - tion o hear s	11L+4T Column with of columns. 8L+3T stress theory – s.			
UN Col init UN Typ She	Ciprocal the NIT IV lumns with tial curvatur NIT V pes of failur ear strain en	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain         ergy theory – Strain energy theory – Fatigue and Creep         5       TUTORIAL: 15	kine's forr n – applica theory – S	nula - tion o hear s	11L+4T Column with of columns. 8L+3T stress theory – s.			
UN Col init UN Tyj She LE	Ciprocal the VIT IV lumns with tial curvatur VIT V pes of failur ear strain en CCTURE: 4 XT BOOK	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain         ergy theory – Strain energy theory – Fatigue and Creep         5       TUTORIAL: 15	kine's forn n – applica theory – S o Failure an	nula - tion o hear s nalysi	11L+4T Column with of columns. 8L+3T stress theory – s. TOTAL: 60			
UN Col init UN Typ She LE TE 1.	Ciprocal the NIT IV lumns with tial curvatur NIT V pes of failur ear strain en CCTURE: 4 XT BOOK Rajput R I	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain         ergy theory – Strain energy theory – Fatigue and Creep         5       TUTORIAL: 15         S	kine's forn n – applica theory – S Failure an Chand Pub	nula - tion o hear s nalysis	11L+4T Column with of columns. 8L+3T stress theory – s. TOTAL: 60 ons, 2015.			
UN Col init UN Typ She <u>LE</u> 1. 2.	Ciprocal the NT IV lumns with tial curvatur NT V pes of failur ear strain en CCTURE: 4 XT BOOK Rajput R I Donaldsor	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain tergy theory – Strain energy theory – Fatigue and Creep         5       TUTORIAL: 15         S         K., Sixth Edition "Strength of Materials" Publisher, S G         N.B.K., "Analysis of Aircraft Structures – An Introduct	kine's fori n – applica theory – S p Failure an Chand Pub tion", Mc0	nula - tion o hear s nalysis	11L+4T Column with of columns. 8L+3T stress theory – s. TOTAL: 60 ons, 2015. Hill, 1993.			
UN Col init UN Typ She <u>LE</u> 1. 2.	Ciprocal the NT IV lumns with tial curvatur NT V pes of failur ear strain en CCTURE: 4 XT BOOK Rajput R I Donaldsor	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain tergy theory – Strain energy theory –Fatigue and Creep         5       TUTORIAL: 15         S         K., Sixth Edition "Strength of Materials" Publisher, S (Strength of Materials)	kine's fori n – applica theory – S p Failure an Chand Pub tion", Mc0	nula - tion o hear s nalysis	11L+4T Column with of columns. 8L+3T stress theory – s. TOTAL: 60 ons, 2015. Hill, 1993.			
UN Col init UN Typ She LE TE 1. 2. 3.	Ciprocal the NT IV lumns with tial curvatur NT V pes of failur ear strain en CCTURE: 4 XT BOOK Rajput R I Donaldsor	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain tergy theory – Strain energy theory –Fatigue and Creep         5       TUTORIAL: 15         S         (., Sixth Edition "Strength of Materials" Publisher, S (a, B.K., "Analysis of Aircraft Structures – An Introduc.         M.G, "Aircraft Structures for Engineering Students",	kine's fori n – applica theory – S p Failure an Chand Pub tion", Mc0	nula - tion o hear s nalysis	11L+4T Column with of columns. 8L+3T stress theory – s. TOTAL: 60 ons, 2015. Hill, 1993.			
UN Col init UN Typ She EE E 2. 3. RE	Ciprocal the VIT IV lumns with tial curvatur VIT V pes of failur ear strain en CCTURE: 4 XT BOOK Rajput R I Donaldsor Megson T EFERENCE Bruhn.E.F	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain tergy theory – Strain energy theory –Fatigue and Creep         5       TUTORIAL: 15         S         (., Sixth Edition "Strength of Materials" Publisher, S (a, B.K., "Analysis of Aircraft Structures – An Introduc.         M.G, "Aircraft Structures for Engineering Students",	kine's fori n – applica theory – S Failure an Chand Pub tion", McG Edward A	nula - tion o hear s nalysi olicatio Graw- rnold,	<b>11L+4T</b> Column with of columns. <b>8L+3T</b> stress theory – s. <b>TOTAL: 60</b> ons, 2015. Hill, 1993. , 1995.			
UN Col init UN Typ She <u>LE</u> <u>1.</u> 2. 3.	Ciprocal the NIT IV lumns with tial curvatur NIT V pes of failur ear strain en CTURE: 4 XT BOOK Rajput R I Donaldson Megson T EFERENCE Bruhn.E.F 1973.	COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain tergy theory – Strain energy theory – Fatigue and Creep         5       TUTORIAL: 15         S         K., Sixth Edition "Strength of Materials" Publisher, S Ga, B.K., "Analysis of Aircraft Structures – An Introductor, M.G, "Aircraft Structures for Engineering Students", BOOKS	kine's form h – applica theory – S Failure an Chand Pub- tion", McC Edward A i set of off	nula - nula - tion o hear s nalysi olicatio Graw- rnold,	11L+4T Column with of columns. 8L+3T stress theory – s. TOTAL: 60 ons, 2015. Hill, 1993. , 1995. ompany, USA,			
UN Colinit UN Typ She <u>LE</u> <u>1.</u> 2. 3. <b>RE</b> 1. 2.	Ciprocal the NIT IV lumns with tial curvatur NIT V pes of failur ear strain en CTURE: 4 XT BOOK Rajput R I Donaldson Megson T EFERENCE Bruhn.E.F 1973.	Drem - Unit load method.         COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain tergy theory – Strain energy theory – Fatigue and Creep         5       TUTORIAL: 15         S         4., Sixth Edition "Strength of Materials" Publisher, S Ga, B.K., "Analysis of Aircraft Structures – An Introduce. M.G, "Aircraft Structures for Engineering Students",         BOOKS         . "Analysis and design of flight vehicle structures" Tr         koS., "Strength of Materials", Vol. I and II, Princeton D	kine's form h – applica theory – S Failure an Chand Pub- tion", McC Edward A i set of off	nula - nula - tion o hear s nalysi olicatio Graw- rnold,	11L+4T Column with of columns. 8L+3T stress theory – s. TOTAL: 60 ons, 2015. Hill, 1993. , 1995. ompany, USA,			
UN Colinit UN Typ She <u>LE</u> <u>1.</u> 2. 3. <b>RE</b> 1. 2.	Ciprocal the NIT IV lumns with tial curvatur NIT V pes of failur ear strain en CTURE: 4 XT BOOK Rajput R I Donaldsor Megson T EFERENCE Bruhn.E.F 1973. Timoshen - Reference	Drem - Unit load method.         COULMNS         various end conditions – Euler's Column curve – Ran         e - Eccentric loading – South well plot – Beam column         FAILURE THEORIES         e theories – Principal stress theory – Principal strain tergy theory – Strain energy theory – Fatigue and Creep         5       TUTORIAL: 15         S         4., Sixth Edition "Strength of Materials" Publisher, S Ga, B.K., "Analysis of Aircraft Structures – An Introduce. M.G, "Aircraft Structures for Engineering Students",         BOOKS         . "Analysis and design of flight vehicle structures" Tr         koS., "Strength of Materials", Vol. I and II, Princeton D	kine's form h – applica theory – S Failure an Chand Pub- tion", McC Edward A i set of off	nula - nula - tion o hear s nalysi olicatio Graw- rnold,	11L+4T Column with of columns. 8L+3T stress theory – s. TOTAL: 60 ons, 2015. Hill, 1993. 1995.			

CO Vs PO	CO1	CO2	CO3	0	CO5		Total	Scaled to 0,1,2 and 3
PO ₁	3	3	2	3	3	2	16	3

### XAS402 - Mapping of CO with PO

PO ₂	2	1	1	2	2	3	11	2
PO ₃	2	1	1	2	2	3	11	2
PO ₄	2	1	1	3	3	3	13	3
PO ₅	3	0	0	3	3	3	12	2
PO ₆	0	0	0	0	0	3	3	1
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	2	2	1
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	1	1	2	4	1
PO ₁₂	0	0	0	0	0	1	1	0
PSO ₁	0	0	0	0	0	0	0	0
<b>PSO</b> ₂	0	0	0	0	0	1	1	0

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0-No Relation, 1-Low Relation, 2-Medium Relation, 3-High Relation

COURSE CODE	XUM403	L	Т	Р	С
COURSE NAME	HUMAN ETHICS,VALUES,RIGHTS AND GENDER EQUALITY	1	0	0	1
PREREQUISITES	NIL	L	Т	Р	Η
C:P:A=1:0:0		1	0	0	1
C.1.A = 1.0.0		-	•	•	

• Students will ultimately be assessed on their ability to demonstrate a commitment to professionalism, rights, ethical behavior, service, and, as appropriate, leadership.

- Students will ultimately be assessed on their knowledge of the legal system and legal doctrine. Students will graduate with a broad knowledge of foundational and other core areas human rights, specialized knowledge in areas of interest, and experience with advanced study.
- Students will ultimately be assessed on the development of legal analysis, legal communication, and legal research.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Relate</i> and <i>Interpret</i> the human ethics and human relationships	Cognitive	Remember, Understanding

CO2	<i>Explain</i> and <i>Apply</i> gender issues, equality and violence against women	Cognitive	Understanding, Applying
CO3	<i>Classify</i> and <i>Develop</i> the identify of women issues and challenges	Cognitive Affective	Analyzing Receiving
CO4	<i>Classify</i> and <i>Dissect</i> human rights and report on violations.	Cognitive	Understanding, Analyze
CO5	<i>List</i> and <i>respond</i> to family values, universal brotherhood, fight against corruption by common man and good governance.	Cognitive Affective	Remember, Respond

HUMAN ETHICS AND VALUES Human Ethics and values - Understanding of oneself and others- motives and needsservice, Social Justice, Dignity and worth, Harmony in human relationship: Family and Society, Integrity and Competence, Caring and Sharing, Honesty and Courage, WHO's holistic development - Valuing Time, Co-operation, Commitment, Sympathy and Empathy, Self respect, Self-Confidence, character building and Personality.

### UNIT II **GENDER EQUALITY**

UNIT I

Gender Equality - Gender Vs Sex, Concepts, definition, Gender equity, equality, and empowerment. Status of Women in India Social, Economical, Education, Health, Employment, HDI, GDI, GEM. Contributions of Dr.B.R. Ambethkar, ThanthaiPeriyar and Phule to Women Empowerment.

#### WOMEN ISSUES AND CHALLENGES UNIT III

Women Issues and Challenges- Female Infanticide, Female feticide, Violence against women, Domestic violence, Sexual Harassment, Trafficking, Access to education, Marriage. Remedial Measures - Acts related to women: Political Right, Property Rights, and Rights to Education, Medical Termination of Pregnancy Act, and Dowry Prohibition Act.

#### UNIT IV **HUMAN RIGHTS**

Human Rights Movement in India – The preamble to the Constitution of India, Human Rights and Duties, Universal Declaration of Human Rights (UDHR), Civil, Political, Economical, Social and Cultural Rights, Rights against torture, Discrimination and forced Labour, Rights and protection of children and elderly. National Human Rights Commission and other statutory Commissions, Creation of Human Rights Literacy and Awareness. - Intellectual Property Rights (IPR). National Policy on occupational safety, occupational health and working environment.

UNIT V GOOD GOVERNANCE AND ADDRESSING SOCIAL ISSUES

9

9

9

Good Governance - Democracy, People's Participation, Transparency in governance and audit, Corruption, Impact of corruption on society, whom to make corruption complaints, fight against corruption and related issues, Fairness in criminal justice administration, Government system of Redressal. Creation of People friendly environment and universal brotherhood.

### REFERENCES

- 1. Aftab A, (Ed.), Human Rights in India: Issues and Challenges, (New Delhi: Raj Publications, 2012).
- 2. Bajwa, G.S. and Bajwa, D.K. Human Rights in India: Implementation and Violations (New Delhi: D.K. Publications, 1996).
- 3. Chatrath, K. J. S., (ed.), Education for Human Rights and Democracy (Shimala: Indian Institute of Advanced Studies, 1998).
- 4. Jagadeesan. P. Marriage and Social legislations in Tamil Nadu, Chennai: Elachiapen

Publications, 1990).

- 5. Kaushal, Rachna, Women and Human Rights in India (New Delhi: Kaveri Books, 2000)
- 6. Mani. V. S., Human Rights in India: An Overview (New Delhi: Institute for the World Congress on Human Rights, 1998).
- 7. Singh, B. P. Sehgal, (ed) Human Rights in India: Problems and Perspectives (New Delhi: Deep and Deep, 1999).
- 8. Veeramani, K. (ed) Periyar on Women Right, (Chennai: Emerald Publishers, 1996)
- 9. Veeramani, K. (ed) Periyar Feminism, (PeriyarManiammai University, Vallam, Thanjavur: 2010).
- 10.Planning Commission report on Occupational Health and Safety http://planningcommission.nic.in/aboutus/committee/wrkgrp12/wg_occup_safety.pCentral Vigilance Commission (Gov. of India) website: http://cvc.nic.in/welcome.html.
- 11. Weblink of Transparency International: https://www.transparency.org/

12. Weblink Status report: https://www.hrw.org/world-report/2015/country-chapters/india

LECTURE: 15 TUTORIAL: 0 SELF STUDY: 30 TOTAL HOURS:45

		0101403-10					Seeled to
CO Vs PO	CO1	CO2	CO3	CO4	CO5	Total	Scaled to 0,1,2 and 3
PO ₁							
PO ₂					2	2	1
PO ₃							
PO ₄							
PO ₅							
PO ₆							
PO ₇							
PO ₈	2	3	2	3	3	13	3
PO ₉		1			2	3	1
PO ₁₀				2	2	4	1
PO ₁₁							
<b>PO</b> ₁₂					2	2	1
PSO ₁							
PSO ₂							

XUM403- Mapping of CO with PO

 $1-6 \rightarrow 1, 7-12 \rightarrow 2, 13-18 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

	RSE CODE	XAS404		L	Т	P	С		
COUI	RSE NAME	AIRCRAFT PROPULSION		3	1	2	5		
PRER	REQUISITES	ENGINEERING THERMODYNAMICS		L	Т	P	Η		
C:P:A	<b>4:1:0</b>			3	1	2	6		
COU	RSE OBJECTI	VES							
•	To understand	the principles of operation and design of aircra	ft engi	nes.					
•	To study about	t the theories behind the engine system							
•	To study about	t the Air breathing engine sections.							
COU	RSE OUTCOM	IES	DO	MA	IN	LE	VEL		
CO1	<b>Describe</b> the comeasures value and port timing	Cogn Psych				ember nanism			
CO2	<i>Express</i> the pe	erformance of Inlets and diffusers	Cognitive		Understand				
CO3		ombustion chamber and <i>measures</i> flash point, and forced convection over a flat plate.	Cognitive Psychomotor		Understand Overt response				
CO4	Assess the per of aircraft's jet	formance characteristics of turbo machineries engine	Cogn	Cognitive		Evaluate			
CO5	Describe the n	ozzle performance of jet engine	0	Cognitive Psychomotor		Remember Perception			
CO6	<b>Discuss</b> about	the needs of aircraft propulsion.		fectiv			Responding		
						r			
J <b>NIT I</b>	INTRO	DUCTION TO AIRCRAFT PROPULSION				9L·	+ <b>3</b> T		
		plants based on methods of aircraft propulsion	n - Fac	ctors	affe				
	1	ng engine - types of reciprocating engine - tu				<u> </u>			
		- turboshaft engine - ramjet engine- scramjet							
thrust equation of jet engine.									
J <b>NIT II</b>	INLETS	S AND DIFFUSERS				9L·	+ <b>3</b> T		
Subsonio	e and supersoni	c inlets -Modes of inlet operation - internal				ompres	ssion		
ntakes -	intake characte	ristic curves - mixed compression intakes - stab	0111ty 0	i inta	ake o	peratic	on.		
						-			

UNIT IIICOMBUSTION CHAMBER9L+ 3TClassification of Combustion chambers - combustion mechanism - factors affecting combustion<br/>chamber performance and design - Flame tube cooling - Flame stabilization - fuel injection.

UNIT IV	TURBOMACHINERY	9L+ 3T					
Axial compressor - velocity triangle - stalling - surging - stage losses - centrifugal compressor -							
Axial flow turbine - radial flow turbine - mixed flow turbine - fans and blowers - efficiencies -							
turbine blade c	ooling techniques - lubrication systems in turbo machinery	·.					

## UNIT V NOZZLE

9L+ 3T

Over expanded, under and optimum expansion in nozzles - fixed geometry nozzle - variable geometry nozzle - attachment of jet pipe - afterburner - types of thrust reverser - types of thrust vectoring - nozzle cooling.

LE	CCTURE: 45TUTORIAL: 15PRACTICAL :	TOTAL: 90
TE	XT BOOKS	
1.	Hill, P.G. and Peterson, C.R. "Mechanics and Thermodynar	nics of Propulsion" Addison -
	Wesley Longman INC, 1999.	
2.	Oates, G.C., "Aero thermodynamics of Aircraft Engine	Components", AIAAEducation
	Series, New York, 1985	
3.	Mathur, M.L. and Sharma, R.P., "Gas Turbine, Jet and	Rocket Propulsion", Standard
	Publishers & Distributors, Delhi, 1999.	
RE	FERENCE BOOKS	
1.	Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H. "C	Gas Turbine Theory", Longman,
	1989.	
•		

### **2.** "Rolls Royce Jet Engine" – Third Edition – 1983.

### List of Experiments

- 1. Valve Timing Diagram for single cylinder four stroke Diesel engine
- 2. Port Timing Diagram for single cylinder two stroke Petrol engine.
- 3. Retardation Test to find Frictional Power of a single cylinder Diesel Engine.
- 4. Studyofanaircraftpistonengine.
- 5. Studyofanaircraftjetengine
- 6. Determination of Flash Point and Fire Point (open Cup).
- 7. Determination of Flash Point (Closed Cup).
- 8. Study of forced convection and free convection heattransfer over a flat plate.
- 9. Study of free jet.
- 10. Study of wall jet.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	1	1	1	1	1	6	1
PO ₃	1	2	2	1	2	1	9	1
PO ₄	1	1	1	1	1	1	6	1
PO ₅	1	3	3	1	0	0	8	1
PO ₆	1	1	1	1	1	1	6	1
<b>PO</b> ₇	1	2	2	2	2	2	11	2
PO ₈	0	0	0	0	0	0	0	0

XAS404 - Mapping of CO with PO

PO ₉	2	2	2	3	3	2	14	2
PO ₁₀	0	0	0	0	0	0	0	0
<b>PO</b> ₁₁	0	1	1	1	1	1	5	1
PO ₁₂	1	1	1	1	1	1	6	1
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0	0

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS405	L	Τ	Р	С
COURSE NAME	ELEMENTS OF SATELLITE TECHNOLOGY	3	0	0	3
PREREQUISITES	NIL	L	Τ	Р	Η
C:P:A= 3:0:0		3	0	0	3
COUDCE OD IECTI					-

COURSE OBJECTIVES

• To develop a basic knowledge about the solar system.

• To learn the different cases of satellite orbit transfer, different satellite injection errors.

COU	RSE OUT	COMES	DOMAIN	LEVEL
CO1	Describ	<i>e</i> the basic satellite network systems.	Cognitive	Remember
CO2		<i>e</i> the orbital maneuver with help of orbit n and satellite trajectories.	Cognitive	Understand
CO3		the structural configuration and need of control in satellite.	Cognitive	Apply
<b>CO4</b>		<i>ntiate</i> the different control methods and of satellite.	Cognitive	Analyze
CO5		he power system and bus electronics nents for the satellite operation.	Cognitive	Evaluate
CO6	Explain	the telemetry and telecommand systems.	Cognitive	Apply
UNIT		<b>INTRODUCTION TO SATELLITE SYST</b> te applications and missions – Satellite types -		9
		s – Satellite sub systems and their functions.	oron types op	
UNIT	II	ORBITAL MECHANICS		9
predic		f flight dynamics – Time and coordinate s bital equation – GPS systems and application ries.	•	
UNIT	III	SATELLITE STRUCTURES & THERMA	AL CONTROL	9
Satelli	te mechai	nical and structural configuration – Structural 1	materials and fabr	ication – The need

of thermal control: externally induced thermal environment – Internally induced thermal environment - Heat transfer mechanism – Thermal control systems: active and passive methods.

9

9

UNIT IV	SPACECRAFT CONTROL
Control require	ments: attitude control - type of control maneuvers

Control requirements: attitude control - type of control maneuvers – Stabilization schemes: spin stabilization, gravity gradient methods, 3 axis stabilization – Commonly used control systems: mass expulsion systems, momentum exchange systems.

UNIT V POWER SYSTEM AND BUS ELECTRONICS

**Solar panels:** Silicon and Ga-As cells – Space battery systems – battery types, characteristics and efficiency parameters – Power electronics.

**Telemetry and telecommand systems:** Tm & TC functions - generally employed communication bands (UHF/VHF, S, L, Ku, Ka etc), their characteristics and applications - Onboard computer.

TEX	AT BOOKS							
1.	Rilay, FF, Space Systems Engineering, McGraw Hill, 1982.							
2.	Vertregt.M., Principles of Astronautics, Elsvier Publishing Company, 1985.							
3.	Introduction Space Flight, Francis J. Hale Prentice Hall, 1994.							
4.	Space Vehicle Design, Michael D. Griffin and James R. French, AIAAEducation Series, 1991.							
REF	ERENCE BOOKS							
1.	Spacecraft Thermal Control, Hand Book, Aerospace Press, 2002.							
2.	Lewis H. Abraham ,Structural Design of Missiles & Space Craft, McGrawHill, 1992.							
3.	Richard.F, Filipowsky Eugen I Muehllorf, Space Communications Systems, Princtice Hall, 1995.							
4.	Hughes, P.C. Space Craft Altitude Dynamics, Wilsey, 1986.							
5.	Gebmart, Heat Transfer, McGraw Hill, Martin J. Communication Satellite Systems,							
	McGraw Hill, 1978.							
LEC	TURE: 45 TUTORIAL: 0 PRACTICAL:0 TOTAL: 45							

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	3	3	3	3	3	3	15	3
PO ₂	3	2	2	3	2	2	12	2
PO ₃	2	3	3	3	2	1	13	3
PO ₄	2	2	2	2	2	2	10	2
PO ₅	0	0	0	0	0	0	0	0
PO ₆	1	1	1	2	2	2	7	1

PO ₇	2	2	2	2	2	2	10	2
PO ₈	0	0	0	0	0	0	0	0
PO ₉	2	2	2	2	2	2	10	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	1	5	1
PO ₁₂	2	2	2	2	2	2	10	2
PSO ₁	2	2	2	2	2	2	10	2
PSO ₂	3	3	3	3	3	2	15	3

COU	RSE CODE		L	Т	Р	С				
COU	RSE NAME`	AIRCRAFT SYSTEMS AND INSTRUME	ENTS	3	0	0	3			
PREF		L	Т	Р	Η					
C:P:A	3	0	0	3						
COU	RSE OBJECT	IVES								
• To	o introduce the	hydraulic and pneumatic systems compone	nts and c	pera	ate, t	ypes	s of			
in	struments and it	s operation including navigational instruments	5							
COU	RSE OUTCON	<b>IES</b>	DOMA	IN	L	EVE	L			
CO1	<i>Explain</i> the c systems.	Cognitiv	ve	Understand		and				
CO2	<i>Compare</i> the basic and modern control systems. Cogr					Understand				
CO3	• •	<i>nctions</i> of fuel system and <i>Examine</i> the raft power plant systems.	Cognitive		Understand, Analyze					
CO4	<i>Outline</i> the n pressurization	eeds of Air-conditioning systems and cabin system.	Cogniti	ve	Und	lerst	and			
CO5	<i>Differentiate</i> Instruments.	the use of flight instruments and Navigation	Cognitiv	ve	Aı	nalyz	ze			
CO6	<i>Inspect</i> the new operations.	eds of engine instruments and their	Cognitiv	ve	Aı	nalyz	ze			
UNIT	UNIT I AIRCRAFT SYSTEMS 9									
UNITI       AIRCRAFT SYSTEMS       9         Hydraulic systems – basic principle – components – hydraulic systems controllers – modes of operation – pneumatic systems – working principles – typical pneumatic power system – brake system – components, landing gear systems – classification – shock absorbers – Extension, retractable mechanism.       9										

UNIT II	AIRPLANE CONTROL SYSTEMS
Conventior	al Systems – power assisted and fully powered flight contr

Conventional Systems – power assisted and fully powered flight controls – power actuated systems – engine control systems – push pull rod system – operating principles – digital fly by wire systems – auto pilot system, active control technology.

## UNIT III ENGINE SYSTEMS

Fuel, lubricating, starting and ignition systems in piston and jet engines- multi-engine fuel systems -types of valves used in gas turbine engines.

## UNIT IV AIRCONDITIONING AND PRESSURIZING SYSTEM

9

8

8

Basic air cycle systems – vapour cycle systems, boot-strap air cycle system – evaporative vapour cycle systems – evaporation air cycle systems – oxygen systems – fire protection systems - deicing and anti icing system.

UNIT V	AIRCRAFT INSTRUMENTS	11					
Flight instr	Flight instruments and navigation instruments – accelerometers, air speed indicators – mach						
meters - altimeters - gyroscopic instruments- principles and operation - study of various							
types of en	types of engine instruments - digital tachometers - temperature gauges - pressure gauge -						
operation a	nd principles.						

LE	CTURE: 45	TUTORIAL: 0	PRACTICAL: 0	TOTAL: 45							
TE	XT BOOKS										
1.	Nagabhushana S, L.K.Sudha. "Aircraft Instrumentation and systems" ISBN-13: 978- 9380578354- I.K. International Publishing House Pvt.Ltd.										
2.	Mekinley, J.L. and	R.D. Bent, "Aircraft Po	ower Plants", McGraw Hill 199	93.							
3.	Pallet, E.H.J, "Airo	craft Instruments & Prin	ciples", Pitman & Co 1993.								
RE	FERENCE BOOK	S									
1.	Roy Lanagton, Ch	uck Clark etc., "Aircraf	t Fuel Systems" Publication W	ïley.							
2.	Mckinley, J.L. and	Bent R.D. "Aircraft Ma	aintenance & Repair", McGrav	w Hill, 1993.							
3.		1	ant Mechanics" US dept. of glish Book Store, New Delhi, 1	-							
<b>E</b> –	References										
1.	"Instrument Landi	ng Systems (ILS)" Auth	or: Michael Feramez.								
2.	Nolan, Chap-2, Na	vigation Systems- Enro	ute								
3.	Jan Rohac "Aircr ECAM.	aft and Spacecraft Ins	trumentation" Lecture Notes	- EFIS, EICAS,							
4.	nptel.ac.in/										

## **XASE01** - Mapping of CO with PO

CO Vs PO CO1 CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
------------------	-----	-----	-----	-----	-------	-----------------------------

PO ₁	3	2	2	2	2	1	12	3
PO ₂	2	2	3	2	2	2	13	3
PO ₃	1	2	3	3	1	1	11	3
PO ₄	0	1	2	3	1	1	8	2
PO ₅	0	1	2	1	0	1	5	1
PO ₆	1	2	3	2	2	2	12	3
PO ₇	0	1	3	2	2	1	9	2
PO ₈	1	2	1	1	1	1	7	2
PO ₉	1	2	2	1	1	1	8	2
PO ₁₀	0	0	1	1	1	0	3	1
PO ₁₁	1	0	0	0	0	0	1	1
PO ₁₂	2	2	3	2	2	2	13	3
PSO ₁	0	1	2	1	2	1	7	2
PSO ₂	1	0	3	0	0	1	5	1

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

0 - No Relation, 1 - Low Relation, 2 - Medium Relation, 3 - High Relation

COURSE CODE	XAS501	L	Т	Р	С
COURSE NAME	AERODYNAMICS II	3	1	0	4
PREREQUISITES	AERODYNAMICS I	L	Т	Р	Η
C:P:A= 4:0:0		3	1	0	4
<b>COURSE OBJECTI</b>	VES				

- To introduce the concepts of compressibility, to make the student understand thetheory behind the formation of shocks and expansion fans in Supersonic flows.
- Tointroduce the methodology of measurements in Supersonic flows.

COUR	SE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Recall</i> the basic concepts of Aerodynamics and <i>Explain</i> compressible flow for various conditions	Cognitive	Remember Understand Analysis
CO2	Generalize the concepts of Normal shock	Cognitive	Understand Analysis

CO3	Analyze about oblique shock and flow past through various shapes	Cognitive	Understand Analysis
CO4	<i>Analyze</i> differential equations of motions for steady compressible flows at Linearized condition	Cognitive	Understand Analysis
CO5	<i>Interpret</i> various designs of Aero foils and <i>Explain</i> its characteristics	Cognitive	Remember Understand
CO6	<i>Infer</i> the various types of wind tunnels and <i>Discuss</i> study of flow visualization methods	Cognitive	Remember Understand

#### UNIT I ONE DIMENSIONAL COMPRESSILBLE FLOW

Energy -Momentum - continuity and state equations -velocity of sound -Adiabatic steady state flow equations – Flow through converging, diverging passages Performance under various back pressures - Mach waves and Mach angles.

NORMAL, OBLIQUE SHOCKS AND EXPANSION WAVES 9L+6T UNIT II Prandtl equation and Rankine-Hugonoit relation - Normal shock-Oblique shocks and corresponding equations -shock polar - Flow past wedges and concave corners -Rayleigh and FannoFlow – Flow past convex corners.

#### DIFFERENETIAL EQUATIONS OF MOTION FOR A UNIT III 9L+4T STEADY COMPRESSIBLE FLOWS

Small perturbation potential theory – solutions for subsonic flows- Prandtl-Glauert affine transformation relations for subsonic flows, Linearized two dimensional supersonic flow theory.

### UNIT IV AIRFOIL IN HIGH SPEED FLOWS

Lower and upper critical Mach numbers – Lift and drag divergence - Characteristics of swept wings -Effects of thickness ,camber and aspect ratio of wings - Transonic area rule - Super Critical Aerofoils - Tip effects.

### UNIT V **HIGH SPEED WIND TUNNELS**

Blow down, In-draft and induction tunnel layouts and their design features - Transonic, supersonic and hyper sonic tunnels and their peculiarities – Helium and gun tunnels -Shock tubes - Opticalmethods of flow visualization.

## **LECTURE: 45TUTORIAL: 15TOTAL: 60**

### **TEXT BOOKS**

- 1. John.D.Anderson, "Modern Compressible Flows". Tata McGraw Hill, New Delhi, 1999.
- 2. Rathakrishnan, E., "Gas Dynamics", Prentice Hall of India, 2003.

### **REFERENCE BOOKS**

- McCornick.W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, 1979 1.
- Zcrow and J.D.Anderson, "Elements of Gas dynamics" Tata McGraw Hill, New 2. Delhi, 1999.

### **E-REFERENCES**

- 1. http://nptel.ac.in/courses/101105059/
- 2. http://nptel.ac.in/courses/101106040/

## 9L

### 9L

9L+5T

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	15	3
PO ₂	2	3	3	3	3	3	16	3
PO ₃	1	2	2	3	3	3	11	2
PO ₄	3	3	3	3	3	3	15	3
PO ₅	0	2	2	2	3	3	9	1
PO ₆	0	3	3	3	2	2	13	2
PO ₇	1	2	2	2	2	2	9	1
PO ₈	0	2	2	0	0	0	4	1
PO ₉	0	3	3	0	0	0	6	1
PO ₁₀	1	1	1	1	1	1	6	1
PO ₁₁	1	1	1	1	1	1	6	1
PO ₁₂	3	3	3	3	2	2	16	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	1	1	10	2

XAS501 - Mapping of CO with PO

<b>COURSE CODE</b>	XAS502	L	Т	Р	С
<b>COURSE NAME</b>	AIRCRAFT STRUCTURES II	3	1	1	5
PREREQUISITES	AIRCRAFT STRUCTURES I	$\mathbf{L}$	Т	Р	Η
C:P:A= 4:1:0		3	1	2	6
<b>COURSE OBJECTI</b>	VES				

- To understand the behaviour of various aircraft structural components under different types of loads.
- To study the concepts of shear flow.
- To understand buckling stress of thin walled sections.

CO1	<i>Express</i> the flexure formula and <i>apply</i> it to symmetrical and unsymmetrical sections of beams.	Cognitive	Understand, Apply
CO2	<i>Describe</i> stresses in beams and <i>compute</i> shear flow in open sections.	Cognitive	Remember, Understand, Apply
CO3	<i>Discuss</i> shear flow in closed sections and <i>distinguish</i> single cell and multi-cell structures.	Cognitive	Understand, Analyze
CO4	<i>Explain</i> bucking of plates; <i>calculate</i> crippling stresses by Needham's and Gerard's methods.	Cognitive	Understand, Apply
CO5	<i>Explain</i> and <i>analyze</i> the stresses in wing and fuselage structures of an aircraft.	Cognitive	Apply, Analyze
CO6	<i>Choose</i> the specimen and <i>measure</i> the deflection; <i>explain</i> structural repair works.	Psychomotor	Perception, Set, Guided response

#### UNIT I **BENDING OF BEAMS**

Elementary theory of bending – Introduction to semi-monocoque structures - Stresses in beams of symmetrical and unsymmetrical sections -Box beams - General formula for bending stresses principal axes method – Neutral axis method.

### UNIT II SHEAR FLOW IN OPEN SECTIONS

Shear stresses in beams - Shear flow in stiffened panels - Shear flow in thin walled open tubes – Shear centre – Shear flow in open sections with stiffeners.

#### UNIT III SHEAR FLOW IN CLOSED SECTIONS

Shear flow in closed sections with stiffeners- Angle of twist - Shear flow in two flange and three flange box beams - Shear centre - Shear flow in thin walled closed tubes - Bredt-Batho theory - Torsional shear flow in multi cell tubes - Flexural shear flow in multi cell stiffened structures.

#### **UNIT IV BUCKLING OF PLATES**

Rectangular sheets under compression - Local buckling stress of thin walled sections -Crippling stresses by Needham's and Gerard's methods - Thin walled column strength-Sheet stiffener panels - Effective width, inter rivet and sheet wrinkling failures.

#### UNIT V STRESS ANALYSIS IN WING AND FUSELAGE

Procedure-Shear and bending moment distribution for semi cantilever and other types of wings and fuselage, thin webbed beam with parallel and non-parallel flanges - Shear resistant web beams - Tension field web beams (Wagner's).

### **TEXT BOOKS**

- E.F. Bruhn, "Analysis and Design of Flight Vehicle Structures", Tristate Offset Co., 1. 1980.
- 2. Megson T.M.G, "Aircraft Structures for Engineering Students", Edward Arnold, 1995.

### **REFERENCE BOOKS**

Peery, D.J. and Azar, J.J., Aircraft Structures, 2nd Edition, McGraw-Hill, New York, 1.

9L+2T

### 8L+2T

### 9L+4T

10L+4T

9L+3T

1993.

- 2. Stephen P. Tinnoshenko&S.woinowsky Krieger, Theory of Plates and Shells, 2nd Edition, McGraw-Hill, Singapore, 1990.
- 3. Rivello, R.M., Theory and Analysis of Flight structures, McGraw-Hill, N.Y., 1993.

### Laboratory:

Ex. No.	List of Experiments
1	Determination of Young's modulus of Steel or Aluminum.
2	Deflection of Beams with various end conditions.
3	Verification of Maxwell's Reciprocal theorem.
4	Column – Testing.
5	Determination of Membrane stresses in thin cylinder under internal pressure.
(	

- 6 Exercise on Riveted joints & repair work.
- 7 Exercise on composites & repair work.
- 8 Repair of Sandwich panels.
- 9 Patch repair welding using TIG.
- 10 Patch repair welding using MIG.

**LECTURE: 45** 

### **TUTORIAL: 15**

## PRACTICAL:30

### **TOTAL: 90**

XAS502	2 - Mapp	oing of (	CO	with P(	)

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	2	3	0	11	2
PO ₂	1	2	3	2	3	3	14	2
PO ₃	0	2	2	2	3	3	12	2
PO ₄	0	0	0	2	2	2	6	1
PO ₅	2	2	2	3	3	3	15	3
PO ₆	0	0	0	3	2	2	7	1
<b>PO</b> ₇	0	0	0	2	2	2	6	1
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	2	2	3	7	1
PO ₁₀	0	0	0	0	0	0	0	0
<b>PO</b> ₁₁	0	0	0	0	0	2	2	0

PO ₁₂	0	0	0	2	2	0	4		1	
PSO ₁	0	0	0	0	0	0	0		0	
PSO ₂	0	0	0	0	2	2	4		1	
COURSE CODI COURSE NAMI PREREQUISIT	E RO	5503 CKET Al			T PRO	PULSION	L N 3 L	T 1 T	P 0 P	С 4 Н

- PREREQUISITES AIRCRAFT PROPULSION C:P:A= 4:0:0 COURSE OBLIECTIVES
  - To understand the principles of operation and design of rocket and spacecraft propulsion.

3

• To study about the Non Air breathing Engines.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<b>Describe</b> the basic principle of operation of ramjet and scramjet	Cognitive	Remember
CO2	<i>Illustrate</i> solid, liquid and hybrid technology in space	Cognitive	Remember, Understand
CO3	<i>Explain</i> the operation of nuclear rocket and its types in space	Cognitive	Understand, Apply
CO4	<i>Classify</i> various electric propulsion techniques in space	Cognitive	Understand
CO5	<i>Illustrate</i> the applications of propulsion concepts in space	Cognitive	Understand
CO6	<i>Explain</i> the need of rocket and spacecraft propulsion	Cognitive	Apply

### UNIT I RAMJET AND SCRAMJET

Ramjet and scramjet: basic principle - geometry - diffuser - combustor - nozzle - performance and control - testing difficulties - thrust to weight ratio - combustion mechanism - propellant usage - advantages and disadvantages.

## UNIT II CHEMICAL ROCKETS

Solid rocket - different perforation - liquid rocket engine - pressure feed system - pump feed system - propellant tanks - hybrid rockets - performance analysis - fuel oxidizer combination - combustion instability - thrust vector control - nozzle selection.

## UNIT III NUCLEAR ROCKET

Nuclear power in space - Nuclear pulse propulsion - Nuclear thermal rocket - direct nuclear rocket - nuclear electric rocket - solid core - liquid core - gas core - test firing - current research - limitations.

## UNIT IV ELECTRIC ROCKET

Ideal flight performance - electrothermal thrusters - non thermal electric thrusters - optimum flight performance - mission applications - electric space power supplies and power conditioning

9

### 9

9

systems.

### UNIT V APPLICATION

Rocket propulsion - rocket boosters - military operations - missiles - spaceships - reentry vehicle - satellite propulsion - application in research - future concepts.

### LECTURE:45 TUTORIAL:15 TOTAL: 60

### **TEXT BOOKS**

- 1. George P.Sutton, Oscar Biblarz, "Rocket Propulsion Elements", seventh edition, Wiley India pvt.Ltd , 2014
- 2. T.W.Lee, "Aerospace Propulsion", Wiley India pvt.Ltd , 2013.

### **REFERENCE BOOKS**

- 1. C.D.Brown, "spacecraft propulsion", AIAA Education series, washington, DC,1996
- 2. R.G.Jahn, "Physics of electric propulsion", McGraw-Hill book company, New York, 1968

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	2	2	16	3
PO ₃	2	3	3	3	2	2	15	3
PO ₄	3	3	3	3	2	2	16	3
PO ₅	0	0	0	0	0	0	0	0
PO ₆	2	3	3	3	2	2	14	3
<b>PO</b> ₇	1	1	1	1	1	2	5	1
PO ₈	0	0	0	0	0	0	0	0
PO ₉	1	1	1	1	1	1	6	1
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	1	0	0
<b>PO</b> ₁₂	2	2	2	2	3	3	13	3
PSO ₁	2	2	2	2	2	2	12	2

XAS503 - Mapping of CO with PO

PSO ₂	2	3	3	3	2	2	1:	5	3
COURSE CODE COURSE NAME	SPA FL	5504 CE MEC EMENTS			SATELL	L 3 ITE L	Т 0 Т	P 0 P	С 3 Н
PREREQUISITE C:P:A= 3:0:0		CHNOLO	-	-		3	0	0	3
<b>COURSE OBJEC</b>	CTIVES								

• To study the basic concepts of orbital Mechanics with particular emphasis on interplanetary trajectories.

S. No.	COURSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Recall</i> about basis of Solar system and <i>Describe</i> about its reference frames and systems	Cognitive	Remember Understand
CO2	<i>Analyze</i> various problems of Space Vehicles and <i>Assess</i> their characteristics	Cognitive	Understand Analysis
CO3	<i>Illustrate</i> about Satellite Injections and <i>Criticize</i> its limitations	Cognitive	Understand Analysis
<b>CO4</b>	<i>Illustrate</i> about Satellite Injections and <i>Criticize</i> its limitations	Cognitive	Understand Analysis
CO5	<i>Describe</i> about Interplanetary Trajectories and <i>Explain</i> its concepts	Cognitive	Understand Analysis
CO6	<i>Define</i> various phases of Missile trajectory and <i>Discuss</i> about Space Environment	Cognitive	Remember Understand

### UNIT I BASIC CONCEPTS

The Solar System–References Frames and Coordinate Systems–The Celestial Sphere–The Ecliptic–Motion of Vernal Equinox –Sidereal Time –Solar Time – Standard Time –The Earth's Atmosphere.

### UNIT II THE GENERAL N-BODY PROBLEM

The many body Problem–Lagrange–The Circular Restricted Three Body Problem– Libration Points-Relative Motion in the N-body Problem–Two–Body Problem– Satellite Orbits – Relations Between Position and Time – Orbital Elements.

### UNIT III SATELLITE INJECTION AND SATELLITE ORBIT 14 PERTURBATIONS

General Aspects of satellite Injections – Satellite Orbit Transfer –Various Cases – Orbit Deviations due to Injection Errors - Special and General Perturbations–Cowell's Method – Encke's Method – Method of vibrations of Orbital Elements – General Perturbations Approach.

UNIT IVINTERPLANETARY TRAJECTORIES7Two Dimensional Interplanetary Trajectories – Fast Interplanetary Trajectories – ThreeDimensional Interplanetary Trajectories – Launch of Interplanetary Spacecraft – Trajectoryabout the Target Planet.

8

### UNIT V BALLISTIC MISSILE TRAJECTORIES AND MATERIALS

The Boost Phase–The Ballistic Phase–Trajectory Geometry-Optimal Flights–Time of Flight–Re–entry Phase–The Position of the Impact Point–Influence Coefficients. Space Environment–Peculiarities–Effect of Space Environment on the Selection of Spacecraft Material.

### **LECTURE: 45**

### TUTORIAL: 0

**TOTAL: 45** 

7

### **TEXT BOOKS**

1. Cornelisse, J.W., "RocketPropulsionandSpaceDynamic", W.H.Freeman&Co., 1984.

### **REFERENCE BOOKS**

- 1. Sutton, G.P., "Rocket Propulsion Elements", John Wiley, 1993.
- 2. Van de Kamp, P., "Elements of Astro mechanics", Pitman, 1979.
- 3. ParkerE.R., "MaterialsforMissilesandSpacecraft", McGraw-HillBookCo.Inc.

### XAS504 - Mapping of CO with PO

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	1	3	3	3	3	3	16	3
PO ₃	1	3	3	3	3	3	16	3
PO ₄	3	3	3	3	3	3	18	3
PO ₅	0	0	0	0	0	0	0	0
PO ₆	0	0	2	2	3	3	10	2
PO ₇	3	0	0	0	1	1	2	1
PO ₈	0	0	0	0	0	0	0	0
PO ₉	0	0	0	0	0	0	0	0
PO ₁₀	0	0	0	0	0	0	0	0
<b>PO</b> ₁₁	1	1	1	1	1	1	6	1
<b>PO</b> ₁₂	2	2	2	2	2	2	12	3
PSO ₁	0	0	0	0	0	0	0	0

PSO ₂	2	2	2	2	2	2	12	3
Total	16	17	19	19	21	21	113	21

COURSE CODE	XASE08	L	Т	Р	С
COURSE NAME`	WIND TUNNEL TECHNIQUES	3	1	0	4
PREREQUISITES	AERODYNAMICS II	L	Т	Р	Η
C:P:A= 4:0:0		3	1	0	4
<b>COURSE OBJECT</b>	IVES				

• To understand classification of wind tunnel.

• To acquire knowledge about calibration and measurements in wind tunnels.

COUR	SE OUTCOMES	DOMAIN	LEVEL		
C01	<i>Recall</i> about basis of Buckingham pi Theorem and <i>Describe</i> about various methods of model testing	Cognitive	Remember Understand		
CO2	Illustrate various Wind Tunnels and Sketchits layouts	Cognitive	Understand Apply		
CO3	<i>Explain</i> about Calibration of Subsonic and Supersonic Wind Tunnels	Cognitive	Understand Apply		
CO4	<i>Demonstrate</i> Measuring Devices used in Wind tunnels	Cognitive	Understand Apply		
CO5	<i>Explain</i> various balancing methods used in wind tunnels	Cognitive	Understand Apply		
CO6	<i>Recall</i> about Visualization Methods and <i>Describe</i> about various methods of Optical Flow visualization	Cognitive	Remember Understand		

### UNIT I PRINCIPLES OF MODEL TESTING

Buckingham pi Theorem – Non dimensional numbers – Scale effect – Geometric Kinematic and Dynamic similarities.

### UNIT II WIND TUNNELS

Classification – special problems of testing in subsonic, transonic, supersonic and hypersonic speed regions – Layouts – sizing and design parameters.

### UNIT III CALIBRATION OF WIND TUNNELS

Test section speed – Horizontal buoyancy – Flow angularities – Turbulence measurements – Associated instrumentation – Calibration of supersonic tunnels.

### UNIT IV WIND TUNNEL MEASUREMENTS

Steady and Unsteady Pressure and velocity measurements – Force measurements –Three component and six component balances – Internal balances – Principles of Hotwire Anemometer (CTA & CCA).

### UNIT V FLOW VISUALIZAITON

Smoke and Tuft grid techniques – Dye injection special techniques – Optical methods of flow visualization.

# 9L+3T

9L+3T

### 9L+3T

### 10L+3T

8L+3T

### **LECTURE: 45**

### **TUTORIAL: 15**

**TOTAL: 60** 

### **TEXT BOOKS**

**1**.Rae, W.H. and Pope, A., Low Speed Wind Tunnel Testing, John Wiley Publication, 1984. **2.R.C.** Pankhurst and D.W. Holder, "Wind-tunnel Technique"Pitman Publishing; New impression edition 1968.

### **REFERENCE BOOKS**

1.Pope, A., and Goin, L., High Speed Wind Tunnel Testing, John Wiley, 1985. 2.Bradsaw, "Experimental Fluid Mechanics", Pergamon Press; 2nd edition, 1970.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	3	3	3	3	3	18	3
PO ₃	0	3	3	3	3	3	15	3
PO ₄	0	3	3	3	3	3	15	3
PO ₅	0	0	0	0	0	0	0	0
PO ₆	0	0	2	2	2	2	8	2
PO ₇	0	0	0	0	0	0	0	0
PO ₈	1	2	2	1	1	2	9	2
PO ₉	0	0	0	0	0	0	0	0
<b>PO</b> ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	0	0	0	0	0	0	0	0
<b>PO</b> ₁₂	3	2	2	3	3	2	15	3
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	2	2	2	2	2	2	12	2

**XASE08** - Mapping of CO with PO

X C	XUM507     ESSENCE OF INDIAN TRADITIONAL       C     P     A       KNOWLEDGE		L	L 1	Т 0	P 1 C	С 0 Р			
$\frac{c}{1}$	P 0.5	A 0.5		-	L 1	<b>1</b> 0	<u> </u>	<u>r</u> 2		
PR	PREREQUISITE:									
CC	COURSE OUTCOMES:									
	Course Outcomes		Domain		Level					
After the completion of the course, students will be able to										
<i>CO 1; Relate</i> and <i>Interpret</i> the Indian Traditional Knowledge Systems			Cognitiv	e	Level Remember, Understanding Understanding, Applying					
					U,					
CO 3; Classify and Develop of Yoga and holistic health care			Cognitiv	e 4	Analyzing					

EREFEREN	I H SINTTOO					
Shoda	shangHrid	ayam			וומ ( בווצ	, iisii u arisiduoli),
				-		Yoga Practices, ish translation),
		alls.) Ed. R Isham, Dell	-	aarsnanann wh	ii y yasa D	nuonyu,
1 GN Ih	a( Eng Tr	ans) Ed R	N Iha Yoga-	darshanam wit	h Vvasa B	hashva
REFERENCES:		, <b></b>				
				ssion, Kolkatta	L	
		rans,), Tark arnad, Ama	-	Annam Bhatta,	inernation	aiChinmay
	<b>1</b>	e wave of I		Annom Dhatt-	Inomation	alChinmar
	1 '	o of Physic				
			•	Vedant, Bharat	iya Vidya	Bhavan
Vidya	Bhavan, M	lumbai, 5th	Edition, 2014	•		-
a. V Siv:	aramakrish	na (Ed.). C	 ultural Heritae	ge of India-Cou	ırse Materi	al. Bharativa
TEXT BOOKS:						
45		101		15		<u>60</u>
Studies. LECTU	RE	TUTORIAL		ORIAL PRACTICAL		TOTAL
	ice and Inc	lian Knowle	edge System •	Yoga and Ho	listic Healt	h care • Case
0111-1			OTHERHO		<b>EB</b> ,	0 + 5 ms
perspective UNIT-V		ND RESP	OND TO FA	MILY VALU	FS	6 + 3 hrs
-	nd explain	basics of Ir	ndian Traditio	nal knowledge	modern sc	ientific
	REPO	RT ON				
holistic health UNIT-IV		CIEV AND	DISSECT	UMAN RIGH	ITS AND	6 + 3 hrs
1 1		odern scien	tific world-vie	w and basic pr	rinciples of	Yoga and
			LTH CARE			
UNIT-III	CLASS	SIFY AND	DEVELOP O	F YOGA AN	D	6 + 3 hrs
important in r disruptions.	nodern soc	ciety with ra	apid technolog	gical advancem	ents and so	ocietal
				apsules in Indi		
		M CAPSU				
and nature.	•			SCIENCE A		6 + 3 hrs
Sustainability				E SYSTEMS Knowledge Sy	stems con	necting society
UNIT-I	RELATI	E AND INT	TERPRET TH	IE INDIAN	Allective	6 + 3 hrs
brotherhood,	a respond		alues, univers	a1	Cognitive Affective	Remember, (Respond)
<b>CO 5</b> ; List an	-				Cognitive	Analyze
	v and Dise	sect human	rights and rep	ort on		Understanding,

	PO1	PO2			PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	3	2									2	2		2
CO 2	3	3	2	2	1		2				2	2	3	2
CO 3	3	3	2	2	1		2				2	2	3	2
CO 4	3	3	2	3	1	1	2				2	2	2	2
CO 5	3	3	3	3	1	1	2	1	1		2	3	3	3
	15	14	9	10	4	2	8	1	1		10	11	11	11

### Mapping of COs with POs

0 - No Relation, 1 - Low Relation, 2- Medium Relation, 3- High Relation

<b>COURSE CODE</b>	XAS601	L	Т	Р	С
<b>COURSE NAME</b>	FLIGHT DYNAMICS	3	1	0	4
PREREQUISITES	AERODYNAMICS I	L	Т	Р	Η
C:P:A= 4:0:0		3	1	0	4
<b>COURSE OBJECTI</b>	VES				

• To study the performance of airplanes under various operating conditions and the static and dynamic response of aircraft for both voluntary and involuntary changes in flight conditions.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	Recall the forces and moments and apply to investigate the flight performance of aircraft in different situations.	Cognitive	Remember, Apply
CO2	Express and Calculate the range, endurance and performance of an aeroplane, for simple accelerating cases such as take-off, landing and turning.	Cognitive	Understand, Apply
CO3	Explain and calculate the influence of forces and moments on the static and dynamic stability of aircraft including longitudinal and lateral motions for stick fixed condition and select the aerofoil.	Cognitive	Understand, Apply
CO4	Explain and calculations to predict aircraft stability for stick free condition and proceed the stability analysis.	Cognitive	Understand, Apply
CO5	Distinguish and compute the conditions of aircraft lateral and directional static stability.	Cognitive	Understand, Apply
CO6	Explain and Examine the dynamics and control of flight vehicles.	Cognitive	Understand, Apply

# UNIT I CRUISING FLIGHT PERFORMANCE

9L+3T

Forces and moments acting on a flight vehicle - Equation of motion of a rigid flight vehicle - Different types of drag - Drag polar of vehicles from low speed to high speeds - Variation of thrust, power with velocity and altitudes for air breathing engines. Performance of airplane in level flight - Power available and power required curves. Maximum speed in level flight - Conditions for minimum drag and power required.

# UNIT IIMANOEUVERING FLIGHT PERFORMANCE9L+3T

Range and endurance - Climbing and gliding flight (Maximum rate of climb and steepest angle of climb, minimum rate of sink and shallowest angle of glide) -Turning performance (Turning rate turn radius). Bank angle and load factor – limitations on turn - V-n diagram and load factor.

### UNIT III STATIC LONGITUDINAL STABILITY

Degree of freedom of rigid bodies in space - Static and dynamic stability - Purpose of controls in airplanes–Static, Longitudinal stability - Stick fixed stability - Basic equilibrium equation - Stability criterion - Influence of CG location - Power effects - Stick fixed neutral point - Stick free stability-Hinge moment coefficient - Stick free neutral points – Symmetric maneuvers - Stick force gradients - Stick force per 'g' - Aerodynamic balancing.

# UNIT IVLATERAL AND DIRECTIONAL STABILITY9L+3T

Dihedral effect - Lateral control - Coupling between rolling and yawing moments - Adverse yaw effects - Aileron reversal - Static directional stability - Weather cocking effect - Rudder requirements - One engine inoperative condition - Rudder lock.

### UNIT V DYNAMIC STABILITY

Introduction to dynamic longitudinal stability: - Modes of stability, effect of freeing the stick - Brief description of lateral and directional dynamic stability - Spiral, divergence, Dutch roll, autorotation and spin.

### **TEXT BOOKS**

- 1. Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", Son:,Inc, NY, 1988.
- 2. R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2004.
- 3. Mc Cornick. W., "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1979.

# REFERENCES

1. Etkin, B., "Dynamics of Flight Stability and Control", Edn. 2, John Wiley, NY, 1982.

2. Babister, A.W., "Aircraft Dynamic Stability and Response", Pergamon Press, Oxford, 1980.

3. Dommasch, D.O., Sherby, S.S., and Connolly, T.F., "Aeroplane Aero dynamics", Third Edition, Issac Pitman, London, 1981.

LECTURE: 45	5 ]	TUTORI XAS			RACTICA CO with I		TO	FAL: 60
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	3	3	3	3	1	3	13	2
PO ₂	3	3	3	3	3	3	18	3
PO ₃	3	3	3	3	3	3	18	3
PO ₄	2	3	2	2	1	2	12	2

9L+3T

9L+3T

PO ₅	3	0	3	3	3	3	15	3
PO ₆	1	2	2	2	1	1	9	1
PO ₇	1	1	1	1	1	3	8	1
PO ₈	1	1	1	1	1	1	6	1
PO ₉	1	2	2	2	2	1	10	2
PO ₁₀	0	0	0	0	0	0	0	0
PO ₁₁	1	1	1	1	1	1	6	1
PO ₁₂	2	2	2	2	3	2	13	2
PSO ₁	0	0	1	1	1	1	4	1
PSO ₂	3	3	3	3	3	3	18	3

COURSE CODE	XAS602	$\mathbf{L}$	Т	Р	С
COURSE NAME	FINITE ELEMENT ANALYSIS	3	1	0	4
PREREQUISITES	AIRCRAFT STRUCTURES II	$\mathbf{L}$	Т	Р	Η
C:P:A= 4:0:0		3	1	0	4
<b>COURSE OBJECT</b>	IVES				

- To recognise the significance and importance of finite element methods to the professional design engineer.
- To provide a theoretical understanding on the fundamentals of finite element methods for small displacement linear elastic analysis (statics).
- To provide an introduction of non-linear finite element.
- To provide experience on how to develop good models and how to interpret the numerical results in design.

COUI	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Recognize</i> the significance and importance of finite element methods to the professional design engineer.	Cognitive	Remember
CO2	<i>Discuss</i> the fundamentals of finite element methods for small displacement linear elastic analysis (statics).	Cognitive	Understand
CO3	<i>Use</i> stress strain relationship and <i>express</i> it for continuum elements with <i>examples</i> .	Cognitive	Understand, Apply
CO4	<i>Analyze</i> the stresses and displacement in non-linear finite element.	Cognitive	Analyze
CO5	<i>Apply</i> the knowledge to develop good models and to <i>interpret</i> the numerical results in design.	Cognitive	Understand, Apply

CO6	<i>Explain</i> the procedure of FEA in aviation.	Cognitive	Apply
	<b>1</b> 1	0	11.2

# UNIT I INTRODUCTION

Various finite element methods – Raleigh Ritz's, Galerkin method- Governing equation and convergence criteria.

# UNIT II DISCRETE ELEMENTS

Bar elements, uniform section, mechanical and thermal loading, varying section, truss analysis. Beam element - problems for various loadings and boundary conditions - Use of local and natural coordinates.

# UNIT III CONTINUUM ELEMENTS

Plane stress, Plane strain and axisymmetric problems, constant and linear strain, triangular elements, stiffness matrix, axisymmetric load vector.

# UNIT IV ISOPARAMETRIC ELEMENTS

Definitions, Shape function for 4, 8 and 9 nodal quadrilateral elements, Stiffness matrix and consistent load vector, Gaussian integration.

# UNIT V FIELD PROBLEM

Heat transfer problems, Steady state fin problems, Derivation of element matrices for two dimensional problems, Torsion problems.

# LECTURE: 45 TUTORIAL: 15 TOTAL: 60

# **TEXT BOOKS**

- 1. Tirupathi.R. Chandrapatha and Ashok D. Belegundu Introduction to FiniteElements in Engineering Printice Hall India, Third Edition, 2003.
- 2. Rao. S.S., Finite Element Methods in Engineering, Butterworth and Heinemann, 2001.

# **REFERENCE BOOKS**

- 1. Reddy J.N. An Introduction to Finite Element Method McGraw Hill 2000.
- 2. Krishnamurthy, C.S., Finite Element Analysis, Tata McGraw Hill, 2000.
- **3.** Bathe, K.J. and Wilson, E.L., Numerical Methods in Finite Elements Analysis, Prentice Hall of India, 1

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	2	2	2	15	3
PO ₂	3	3	2	2	3	3	16	3
PO ₃	1	2	1	1	2	1	8	1
PO ₄	0	2	3	1	1	1	8	1

#### XAS602 - Mapping of CO with PO

# 10L+3T

8L+3T

# 9L+3T

# 8L+2T

10L+4T

PO ₅	3	3	3	0	3	2	14	2
PO ₆	0	1	0	0	0	0	1	0
PO ₇	0	1	0	0	2	1	4	1
PO ₈	0	1	0	0	0	0	1	0
PO ₉	0	2	0	0	0	0	2	0
PO ₁₀	0	0	0	0	0	0	0	0
<b>PO</b> ₁₁	0	0	0	0	0	0	0	0
PO ₁₂	0	1	0	0	2	1	4	1
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	2	1	3	1

Р

1

Р

2

С

4

Η

5

COURSE CODE	XAS603	LT
COURSE NAME	UAV TECHNOLOGIES	3 0
PREREQUISITES	XAS502 AERODYNAMICS II	LT
C:P:A= 3:1:0		3 0
<b>COURSE OBJECTI</b>	VES	

- To learn about different aspects of UAV systems.
- To learn about Design modeling and control.
- To gain knowledge in improving reliability of UAV systems.
- To know about Deployment of UAV systems.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<b>Describe</b> the design considerations of Unmanned Aerial Vehicle and <b>Identify</b> the various roles of UAV. Classify the UAV system and <b>Discuss</b> the applications of UAV	Cognitive Psychomotor	Remember, Understand Set, Guided Response
CO2	<i>Explain</i> the various types of sensors and Communication systems used in UAV also <i>Discuss</i> the Data link system used in UAV	Cognitive Psychomotor	Understand Set, Perception
CO3	<i>Discuss</i> the various design configurations of HTOL, VTOL and Hybrid models. And <i>Analyze</i> useful of solar cells u in UAV.	Cognitive Psychomotor	Understand, Analyze Set, Guided, Response, Mech.
CO4	<i>Examine</i> and <i>classify</i> the failure modes of components and control systems in UAV.	Cognitive	Apply, Analyze
CO5	<i>Define</i> use of Navigation systems in UAV and <i>Distinguish</i> of various Navigation systems.	Cognitive Psychomotor	Remember, Understand Set, Perception

	Explain the concepts and characteristics of		Understand,
CO6	Swarming and Measure the goals and operational	Cognitive	Evaluate
	issues of various UAV systems.	Psychomotor	Guided,
			Response, Mech

#### UNIT I INTRODUCTION, BASICS, TYPES AND ROLES

9

UAV attributes, manned vs unmanned, design considerations, acquisition & life cycle costs, UAS architecture, UAS components including the air vehicle, payload, data link and ground control station, categories and classifications, civil applications.

UNIT II SENSORS AND ITS COMMUNICATIONS AND DATA LINKS 9 EO, IR, multispectral, Hyper spectral, LIDAR, SAR, small UAV sensors, atmospheric and weather effects, sensor data rates, future sensor trends, current state of data links, future needs of data links, line of sight fundamentals, beyond line of sight fundamentals, UAS communications failure.

# UNIT III CONCEPTUAL DESIGN AND SOLAR/FUEL CELL 9 PROPULSION

UAS design process, airframe design considerations, launch & recovery methods, propulsion considerations, communications, control & stability, ground control system, support equipment, transportation, solar cells & solar energy, solar aircraft challenges, solar wing design, past solar designs, energy storage methods & density, fuel cell basics & UAS integration.

**UNIT IV IMPROVING RELIABILITY AND UAV NAVIGATION SYSTEM** 9 Fault Tolerant Control Architecture, Fault Detection & Identification, Reconfigurable Flight Controllers, Non-Adaptive Controllers, Adaptive Controllers, UAV Navigation, Satellite Navigation, Inertial Navigation, Sensor Fusion for Navigation, Image Navigation (Skysys).

## UNIT V SWARMING, FUTURE UAS CHARACTERISTICS AND ROLES 9 Swarming Characteristics, Swarming Concepts, Emergent Behavior Characteristics Swarming Algorithms, Swarm Communications. Goals & Operational Issues, Space, Hypersonic, Submarine Launched, UCAS, Pseudo Satellites.

# **TEXT BOOKS**

- 1. <u>Thomas Gleason</u>, "Introduction to UAV Systems", 4th Edition <u>Paul Fahlstrom</u>.
- 2. <u>Dr.Jerry Le Mieux</u>, Introduction to Unmanned Systems Air, Ground, Sea & Space.

# REFERENCES

- 1. Roskam, Jan, Airplane Flight Dynamics and Automatic Flight Control, Part I, Design, Analysis, and Research Corporation, Lawrence, KS, 1994.
- 2. Bruhn, E. F., Analysis and Design of Flight Vehicle Structures, Tri-State Offset Company, Cincinnati, OH, 1965.
- 3. Raymer, Daniel P., Aircraft Design: A Conceptual Approach, Fourth Edition, American Institute of Aeronautics and Astronautics, Inc., Reston, VA, 2006.
- 4. Austin, Reg. Unmanned Aircraft Systems UAVS Design, Development and Deployment, John Wiley and Sons, Ltd., Blacksburg, VA, 2010.

**LECTURE: 45** 

PRACTICAL: 30

**TOTAL: 75** 

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5
PO ₁	3	2	2	2	2	1	12	2
PO ₂	2	2	3	2	2	2	13	2
PO ₃	1	2	3	3	2	1	12	2
PO ₄	0	1	2	3	1	1	8	1
PO ₅	0	1	2	2	0	1	6	1
PO ₆	1	2	3	2	2	2	12	2
PO ₇	0	1	3	2	2	1	9	2
PO ₈	1	2	1	1	1	1	7	1
PO ₉	1	2	2	2	1	1	9	2
PO ₁₀	0	0	1	1	1	0	3	1
PO ₁₁	1	0	0	0	0	0	1	0
PO ₁₂	2	2	3	2	2	2	13	2
PSO ₁	0	1	2	2	2	1	8	1
PSO ₂	1	0	3	0	0	1	5	1

# XAS603 - Mapping of CO with PO

COURSE CODE	XAS604	LT	Р	С
COURSE NAME	AVIONICS	3 0	1	4
PREREQUISITES	CONTROL SYSTEMS	LT	Р	Η
C:P:A= 3:1:0		3 0	2	5
<b>COURSE OBJECTI</b>	VES			

# • To introduce various digital electronic principles and working operations of digital circuit.

- To gain knowledge in integration of digital electronics with cockpit equipments.
- To understand the various principles in Displays, I/O devices and power.
- To study the validation and certification procedures.

COUR	RSE OUTCOMES	DOMAIN	LEVEL
CO1	<i>Know</i> the basics of Avionics in Civil and Military Aircraft systems	Cognitive	Understand
CO2	Describe the Data buses MIL-STD 1553 B -	Cognitive	Remember

	ARINC 429 -ARINC 629 and to understand the avionics architecture.	Psychomotor	Understand Perception
CO3	<i>Classify</i> the various displays, I/O devices and power systems and comparing the Military and Civil Requirements.	Cognitive Psychomotor	Understand Analyze Set
CO4	Explain about RADAR and its operation procedures	Cognitive	Understand
CO5	<i>Identify</i> the future avionics architecture	Cognitive	Remember
CO6	Understand the FAR rules and its requirements	Cognitive	Understand

#### UNIT I INTRODUCTION TO AVIONICS

Role for Avionics in Civil and Military Aircraft systems - Avionics sub-systems and design - defining avionics System/subsystem requirements - importance of 'ilities', Avionics system architectures.

0

9

9

9

#### UNIT II DIGITAL AVIONICS ARCHITECTURE

Avionics system architecture– Features and applications of Data buses MIL–STD 1553 B – ARINC 429 -ARINC 629 - SAFEbus /FlexRay - Time triggered communication protocol/controller Area network - AFDX - CSDB.

### UNIT III DISPLAYS, I/O DEVICES AND POWER

Trends in display technology, Alphanumeric displays, character displays etc., Civil and Military aircraft cockpits, MFDs, MFK, HUD, HDD, HMD, DVI, HOTAS, Synthetic and enhanced vision, situation awareness, Panoramic/big picture display, virtual cockpit-Civil and Military Electrical Power requirement standards, comparing the Military and Civil Requirements and Tips for Power System Design.

#### UNIT IV AERIALS AND PROPAGATION

Antenna theory - various types of antenna for medium wave short wave - VHF frequencies - propagation at microwave frequencies - atmospheric attenuation - effects of precipitation - reflection - the voltage and current distribution along antenna of various length - characteristics of ground planes -Refraction and Diffraction phenomenon - clutter signals.

#### UNIT V SYSTEM ASSESSMENT, VALIDATION AND CERTIFICATION 9

Fault tolerant systems - Hardware and Software, Evaluating system design and Future architecture - Hardware assessment- FARs guide certification requirements-Fault Tree analysis - Failure mode and effects analysis - Criticality, damaging modes and effects analysis - Software development process models - Software Assessment and Validation - Civil and Military standards - Certification of Civil Avionics.

#### **TEXT BOOKS**

- 1. R.P.G. Collinson, "Introduction to Avionics", Chapman & Hall Publications, 1996.
- 2. Myron Kayton and Walter R fried, Avionics Navigation Systems, John Wiley and Sons.
- 3. RF Hnasforde, Heywood and Company London: Radio Aids to Civil Aviation.

#### REFERENCES

1. Middleton, D.H., Ed., "Avionics Systems, Longman Scientific and Technical", Longman Group UK Ltd., England, 1919.

2. Spitzer, C.R., "Digital Avionic Systems", Prentice Hall, Englewood Cliffs, N.J., USA., 1917

3. Brain Kendal, "Manual of Avionics", The English Book House, 3rd Edition, New Delhi, 1993.

#### LIST OF EXPERIMENTS

- Study of basic gates. 1.
- Study of installing and configuring of AFDX card in transmitting and receiving mode. 2.
- Study of Determination of gain for the given antenna. 3.
- 4. Adder / Subtractor
- Multiplexer / Demultiplexer 5.
- Encoder / Decoder 6.
- Interface programming with 4 digit 7 segment display and switches and LEDs 7.
- Study of MIL-STD 1553B Data bus 8.
- Digital to analog converter. 9.

# **LECTURE: 45PRACTICAL: 30**

#### **TUTORIAL: 0**

**TOTAL: 75** 

XAS604 -Mapping of CO with PO											
CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Total /5			
PO ₁	3	3	3	3	3	3	18	3			
PO ₂	1	1	1	1	1	1	6	1			
PO ₃	1	2	2	1	2	1	9	2			
PO ₄	1	1	1	1	1	1	6	1			
PO ₅	1	3	3	1	0	0	8	2			
PO ₆	1	1	1	1	1	1	6	1			
PO ₇	1	2	2	2	2	2	11	2			
PO ₈	0	0	0	0	0	0	0	0			
PO ₉	2	2	2	3	3	2	14	3			
PO ₁₀	0	0	0	0	0	0	0	0			
PO ₁₁	0	1	1	1	1	1	5	1			
PO ₁₂	1	1	1	1	1	1	6	1			
PSO ₁	0	0	0	0	0	0	0	0			
PSO ₂	0	0	0	0	0	0	0	0			

VACCOA MA .

#### **COURSE CODE** XASE14 С L Т Р AIRCRAFT RULES AND REGULATIONS 3 0 0 3 **COURSE NAME CAR I AND II**

#### PREREOUISITES NIL C:P:A= 3:0:0 **COURSE OBJECTIVES**

• The objective of this subject is to study various C.A.R series rules and regulations.

COURSE O	DUTCOMES	DOMAI N	LEVEL
CO1	<i>Explain</i> about CAR series A and B	Cognitive	Understand
CO2	<b>Describe</b> about investigation and defect analysis, <b>explain</b> the maintenance process.	Cognitive	Remember Understand
CO3	CAR series F <i>explain</i> about Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller	Cognitive	Understand
CO4	<i>Understand</i> the mandatory modifications and inspections in CAR series 'L' & 'M'.	Cognitive	Understand
CO5	<i>Explain</i> the registration markings, weight balance control and aircraft logbooks.	Cognitive	Understand
CO6	<i>Explain</i> the use of CAR I and II.	Cognitive	Understand

#### **UNIT I CAR SERIES 'A'**

Responsibilities of operators / owners - Procedure of CAR issue, amendments etc - Objectives and targets of airworthiness directorate - Airworthiness regulations and safety oversight of engineering activities of operators - CAR SERIES 'B' - Issue approval of cockpit check list -MEL -CDL: Deficiency list (MEL & CDL); Preparation and use of cockpit check list and emergency list.

#### CAR SERIES 'C' AND 'D' UNIT II

CAR SERIES 'C' - Defect recording - reporting - investigation - rectification and analysis -Flight report - Reporting and rectification of defects observed on aircraft - Analytical study of in-fight readings & recordings - Maintenance control by reliability Method.

CAR SERIES 'D'- Aircraft Maintenance Programmes - Reliability Programme (Engines); Aircraft maintenance programme& their approval - On condition maintenance of reciprocating engines - TBO - Revision programme - Maintenance of fuel and oil - Light aircraft engines; Fixing routine maintenance periods and component TBOs - Initial & revisions.

#### **CAR SERIES 'F'** UNIT III

AIR WORTHINESS AND CONTINUED AIR WORTHINESS: Procedure relating to registration of aircraft - Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller - Issue / revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness.

#### **UNIT IV** CAR SERIES 'L and M'

Issue of AME License - its classification and experience requirements - Complete Series 'L'. CAR SERIES 'M' Mandatory Modifications / Inspections.

#### **UNIT V** CAR SERIES 'X'

8

0

11

L

3

Т

0

Р Η

0 3

9

CAR SERIES 'X' – Registration Markings of aircraft - Weight and balance control of an aircraft - Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft - Concessions; Aircraft log books - Document to be carried on board on Indian registered aircraft - Procedure for issue of taxi permit - Procedure for issue of type approval of aircraft components and equipment including instruments.

# LECTURE:45TUTORIAL:0

#### **TOTAL: 45**

### **TEXT BOOKS**

- 1. Civil Aviation Requirements with latest Amendment (section 2 Airworthiness)", Published by DGCA. The English Book Store, 17-1 Connaught Circus, New Delhi.
- 2. Lloyd Dingle,"Aircraft Engineering Principles", A Butterworth-Heinemann Title; 1st edition edition,2004.

### **REFERENCE BOOKS**

- 1. Aircraft Manual (India) ", Volume Latest Edition, The English Book Store, 17-1, Connaught Circus, New Delhi.
- 2. Aeronautical Information Circulars (relating to Airworthiness) ", from DGCA.
- 3. "Advisory Circulars ", from DGCA.

CO Vs PO	CO1	CO2	CO3	CO4	CO5	CO6	Total	Scaled to 0,1,2 and 3
PO ₁	3	3	3	3	3	3	18	3
PO ₂	0	0	0	0	0	0	0	0
PO ₃	1	1	1	1	1	1	6	1
PO ₄	1	2	2	1	1	1	8	1
PO ₅	0	0	0	0	0	0	0	0
PO ₆	0	0	0	0	0	0	0	0
PO ₇	0	0	0	0	0	0	0	0
PO ₈	0	0	0	0	0	0	0	0
PO ₉	1	1	1	1	1	1	6	1
<b>PO</b> ₁₀	0	0	0	0	0	0	0	0
<b>PO</b> ₁₁	0	0	0	0	0	0	0	0
<b>PO</b> ₁₂	1	2	2	2	1	1	9	2
PSO ₁	0	0	0	0	0	0	0	0
PSO ₂	0	0	0	0	0	0	0	0

### XASE14 -Mapping of CO with PO

COURS	ECODE	XCI607		L	Т	Р	С		
	E NAME	CONSTITUTIONOFINI	DIA	3	0	0	3		
PRERE	QUISITE:	NIL		L	Т	Р	Н		
C:P:A		3:0:0		3	0	0	3		
COURS	EOUTCOM	IES	Domaiı	1   I	Leve				
CO1	Understand	theConstitutionalHistory	Cogniti	ve l					
CO2	Understand	<i>IthePowersandFunctions</i>	Cogniti	ve I	Jnde	rstar	nding		
CO3	Understand theLegislature Affective Remember								
CO4	Understand	<i>ItheJudiciary</i>	Affectiv	e I	Reme	mbe	ering		
CO5	Understand	<i>I</i> theCentreStaterelations	Cogniti	ve I	Jnde	rstar	nding		
UNITI			·				08		
	•	-TheConstitutionalRights-I DirectiveprinciplesofStateP		alRi	ghts-				
UNITII		Directiveprinciplesorblater	oney.				09		
	nExecutive-'	ThePresidentofIndia(powers	sandfunctions)-Vice-	Pres	ident	ofIn			
		rs-PrimeMinister-Powersar							
UNITII	[						10		
Union L	egislature-St	ructure and Functions of Lo	k Sabha-Structure ar	d Fi	inctio	ons o	of		
		ive Procedure in India-Imp							
	of the Lok S								
UNITIV	τ						09		
		- Powers of the Supreme		isdic	tion-				
	gurisdiction	s- Advisory Jurisdiction- Ju	dicial review.				00		
UNITV				1.0			09		
	Minister-Le	s- Political Parties- Role of gislative Assembly-State Ju							
<b>.</b>	CTURE	TUTORIA	PRACTICA	L	Т	OT	4L		
		L							
	45	0	0			45			
REFER									
1	. W.H.Morri								
2	Governmer . M.V.Pylee	ntandpoliticsofIndia,NewDe -	lhi,B.1.Publishers,19	974.					
	•	GovernmentinIndia,Bomba	v,AsiaPublishingHo	use.	977				
		TheGovernmentandpolitics	•						
		-SelectConstitutionsS,Chan							
	-	an-SelectModernGovernme			elhi,1	995			
		DemocracticConstitutionofI			-,-				
		ri- ConstitutionofIndia, Indi							
-	_								

# Table1:Mapping ofCOswithPOs

	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9
CO1	2			1					
CO2	2			1					

CO3	2		1			1
CO4	2		1		1	1
CO5	2	2	1		1	1
Total	10	2	5		2	3
Scaledto 0,1,2,3	2	1	1		1	1

1-5→1,6-10→2,11-15→3

0-NoRelation, 1- LowRelation, 2- MediumRelation, 3- HighRelation

Semeste	er	VII						
Subject	Name	e AVIONICS						
Subject	Code	XAS 702						
Prerequ	isite	NIL						
		Г-Р-С	C:P:A		L –T –P –H			
		) – 1- 4	3:0.9:0.1		3-0-2-5			
Course	Outco	ome:				main P or A		
CO1		ribe, understand, m design and deve	construct and repo clopment	ort Avionics	C (Rer Understar P (Mec	nember, nd, Apply) chanism)		
CO2		ribe, understand, nics Architecture	the Digital	A (Respond) I C (Remember, Understand) P (Set) A (Respond)				
CO3		ne, select, compa ays, i/o devices an						
CO4		ine, explain the nics systems.	Aerials and Propaga	ation in the				
CO5		-	uct and report the ation in the avionics s		· · · · · · · · · · · · · · · · · · ·			
COURS	SE CC	NTENT				1 /		
UNIT-I	Ι	NTRODUCTION	TO AVIONICS			15hrs		
	E	Economics - Econo	nstruction Manageme omic Decision Makin on Alternatives –BOT	ng - Time val	ue of money	- cash flow		
UNIT –	II	DIGITAL AVION	ICS ARCHITECTU	JRE		15hrs		
	v n	vork breakdown s	ne development of con tructure – planning t - critical path met	echniques - b	ar charts - p	reparation of		

UNIT-III	DISPLAYS, I/O DEVICES AND POWER 15 h	rs									
	Materials- inventory control: types of inventory, EOQ - different tools f inventory controls. Equipment: Classification of construction equipmer planning and selecting of equipment. Manpower: Classes of labour - cost labour- labour productivity.	nt-									
UNIT -IV	VAERIALS AND PROPAGATIO15 h	rs									
	Tender notice-Tender document-EMD-SD-Prebid conference-Award and signing of contract agreement-Site meeting-Payment of bills-Breach of contract- Liquidated damages-Project closure										
UNIT V	SYSTEM ASSESSMENT,VALIDATIONAND15 hCERTIFICATION	rs									
	Introduction to construction quality - Inspection, quality control and quality assurance – Quality circle - Quality management system Construction safety – accidents and injuries - Personal protective equipments - Health and safety act and OSHAS regulations - Safety and health management system- Safety manual.										
TEXT BO	DOKS										
2. My So 3. RF <b>REFERE</b> 1. My Lo 2. Sp 19 3. Br	iddleton, D.H., Ed., "Avionics Systems, Longman Scientific and Technica ongman Group UK Ltd.,England, 1919. itzer, C.R., "Digital Avionic Systems", Prentice Hall, Englewood Cliffs, N.J., USA	l", A.,									
PRACTI	CALS 15h	irs									
<ol> <li>Stu</li> <li>Stu</li> <li>Stu</li> <li>Action</li> <li>Mu</li> <li>En</li> <li>Interview</li> </ol>	udy of basic gates. udy of installing and configuring of AFDX card in transmitting and receiving mode udy of Determination of gain for the given antenna. Ider / Subtractor ultiplexer / Demultiplexer ucoder / Decoder verface programming with 4 digit 7 segment display and switches and LED udy of MIL-STD 1553B Data bus										

9. Digital to analog converter

L-45 hrs P-30hrs Total – 75 hrs

Mapping of COs with POs

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	3	0	2	1	1	2	0	0	0	0	1	0	0
CO2	2	2	0	2	2	1	1	0	0	0	0	1	0	0
CO3	3	3	0	3	2	2	2	0	0	0	0	1	2	2
CO4	1	2	0	1	1	0	0	0	0	0	0	1	0	0
CO5	2	2	0	2	3	2	1	0	0	0	0	1	0	0
	11	12	0	10	9	6	6	0	0	0	0	5	2	2
	11		0	10	9						_	_	-	_

1 - Low, 2 – Medium, 3 – High

COURSECODE	XAS701	L	Т	Р	C
COURSENAME	COMPUTATIONALFLUIDDYNAMICS	3	1	1	5
PREREQUISITES	AERODYNAMICSII	L	Т	Р	H
C:P:A=4:1:0		3	1	2	6

# **COURSEOBJECTIVES**

- Toknowaboutmeshgeneration.
- Toknowaboutdifferentmodulesofcomputation.
- Tofindsolutionsforfluiddynamicsproblemsusingdifferentmethods.

COU	RSEOUTCOMES	DOMAIN	LEVEL
CO1	<i>Describe</i> the basic definitions and governing equationsofCFD.	Cognitive	Remember
CO2	<i>Explain</i> and <i>manipulate</i> the approach of finite	Cognitive	Apply Guidedresponse
	differencemethod		
CO3	<i>Illustrate</i> and <i>measure</i> the basic techniques of finite volumemethod	Cognitive	Analyze Mechanism
CO4	<i>Formulate</i> and <i>measure</i> the basic techniques of finite element method.	Cognitive	Create Overtresponse
CO5	Appraise the applications of CFD invarious fields.	Cognitive	Evaluate
CO6	Explain theuseofCFDin Aerospacevehicles.	Cognitive	Apply

# UNITI INTRODUCTION

Governing equations – Discretization – Pressure velocity coupling – Mesh generation – Multigrid method – Consistency – Stability – Convergence – Accuracy – Efficiency – Boundaryconditions– Turbulencemodeling– Different panel methods.

# UNITII FINITEDIFFERENCEMETHOD

Classification of partial differential equation - Explicit and Implicit methods – ADI methods – First order wave equation – Stability of Hyperbolic and elliptic equation -Conservative, UpwindandTransportiveProperty –UpwindDifferencingandArtificial Viscosity–Hybridscheme.

# UNITIII FINITEVOLUMEMETHOD

Basictechniques–Generalizedapproach–Lax-VendoroffTimeStepping– RungeKuttaTimeStepping–MultistageTimeStepping-Equationswithfirstderivatives– Equationswithsecond Derivatives-Vorticity transport formulation–Applications. UNITIV FINITEELEMENTMETHOD

Galerkin's weak formulation-weighted residual with the analytical solution as the trial function of the solution of the solu

- Galerkin's weighted residual form at elemental level - Element formulation for the 2D steadystate heat transfer problem - Approximation for the thermal profile - Determination of elementequations- Assembly of elements and solutions of the global system equations.

# UNITV APPLICATIONS

CFD as a Design tool – CFD as a Research tool – Aerospace applications - Steady and unsteadyAnalysis - Fluid analysis over the aircrafts& rockets - Fluid analysis inside the Engine - ThermalAnalysis – Re-entry Vehicle - Aerodynamic heating - Fluid structure interaction – Satellite'sThermalenvironment-Introductionto CFD simulation softwarepackages.

# TEXTBOOKS

- 1. GautamBiswas,SomenathMukherjee,,"ComputationalFluidDynamics"AlphaScience International,2014.
- JiyuanTu,GuanHengYeoh,ChaoqunLiu,"ComputationalFluidDynamics:APracticalApproach", Butterworth-HeinemannLtd;2ndRevisededitionedition(21September 2012).
- 3. JohnD.AndersonJr.,"ComputationalFluidDynamics",Mcgraw-HillSeries,2010.
- 4. C.A.J.Fletcher, "ComputationalTechniquesforFluidDynamics1" SpringerVerlag, 1995.
- 5. C.A.J.Fletcher, "ComputationalTechniquesforFluidDynamics2", SpringerVerlag, 1995. **REFERENCEBOOKS**
- 1. H.K.VersteegandW.Malalsekera"AnIntroductiontoComputationalFluidDynamics, TheFiniteVolumeMethod",LongmanScientific& Technical,1995.
- 2. T.J.Chung, "ComputationalFluidDynamics", CambridgeUniversityPress, 2002.

9L +3T

9L +3T 3. C.Hirch, "NumericalComputationofInternalandExternalFlows" Volume-2, John Wileyand Sons, 1994.

### ListofExperiments

- 1. Steadyandtransientflow overAerofoil.
- 2. TurbulentflowandHeattransferin amixedElbow.
- 3. Nozzleflowforasolidpropellantrocket.
- 4. Waterand air inaspinning bowl.
- 5. ChemicalmixingandGaseouscombustion.
- 6. CombinedradiationandNaturalconvectionin asquarebox.
- 7. CombustioninJetengine'sCombustionchamber.
- 8. CombustioninLiquidrocketEngine.
- 9. Rotorandstatorinteractionusingslidingmeshes.
- 10. Turbineblade coolingtechniques.

LECTURE:45	<b>TUTORIAL:15</b>	PRACTICAL:30	TOTAL:90
	XAS701Ma	pping ofCO withPO	

COVs PO	CO1	CO2	CO3	<b>CO4</b>	CO5	CO6	Total	Total /5
PO ₁	3	3	3	3	3	3	18	3
PO ₂	3	2	2	3	2	2	14	3
PO ₃	2	3	3	3	2	2	15	3
PO ₄	2	3	3	3	2	2	15	3
PO ₅	3	3	3	3	3	2	15	3
PO ₆	1	1	1	2	2	2	9	2
PO ₇	2	2	2	2	2	2	12	2
PO ₈	0	0	0	0	0	0	0	0
PO ₉	2	2	2	2	2	2	12	2
PO10	0	0	0	0	0	0	0	0
<b>PO</b> 11	0	0	0	0	0	0	0	0
PO12	2	2	2	2	2	2	12	2
PSO ₁	2	2	2	2	2	2	12	2
PSO ₂	3	3	3	3	3	3	18	3

Semeste	er	VII			
Subject	Name	CYBER SECU	JRITY		
Subject	Code	XUM 706			
	L –T	-Р-С	C:P:A	L -	-Т –Р –Н
	0- 0-	- 0- 0	3:0:0	3-	0-0-3
Course	Outcor	ne:			Domain
					C or P or A
CO1	Able Regul		the Cyber Security Policy	y, Laws and	C (Remember)
CO2	Able t	o discuss the Cyl	per Security Management Con	cepts	C (Understand)
CO3	Able t	are	C (Understand)		
CO4	Able t	rity Concepts	C (Understand)		
CO5	Able t	o understandvari	ous security threats		C (Understand)
COURS	SE CON	NTENT			l
UNIT I	Cyl and	l Regulations –	yber Security policy – Doma - Enterprise Policy – Tech ategy Versus Policy – Cyber	nology Operat	L curity Policy – Laws ions – Technology
UNIT I	Cyl and Con Inte	ber Security – C Regulations – nfiguration - Stra ernet – E commen	yber Security policy – Doma - Enterprise Policy – Tech	nology Operat Security Evolut llenges	eurity Policy – Laws ions – Technology ion – Productivity –
	I CY and Con Inte I CY Sec Mo at t Cyl	ber Security – C Regulations – I Regulations – Infiguration - Stra ernet – E commen <b>BER SECURIT</b> Der Security Met curity Framework bile Devices – So he Top – Policy	yber Security policy – Doma - Enterprise Policy – Tech ategy Versus Policy – Cyber rce – Counter Measures – Cha <b>Y OBJECTIVES AND GUI</b> rics – Security Management trics – E Commerce Systems – In ecurity Policy Objectives – Ga as a Project– Cyber Security cumentation – The Catalog A	Inology       Operat         Security       Evolut         llenges       DANCE         Goals       – Countin         ndustrial       Contro         uidance       for       Dec         Management       –	curity Policy – Laws ions – Technology ion – Productivity – 9 hrs ng Vulnerabilities – l Systems – Personal ision Makers – Tone Arriving at Goals –
	I Cyl Sec Sec	ber Security – C I Regulations – Infiguration - Stra ernet – E commen BER SECURIT ber Security Met curity Framework bile Devices – So he Top – Policy ber Security Doc curity Policy Taxo	yber Security policy – Doma - Enterprise Policy – Tech ategy Versus Policy – Cyber rce – Counter Measures – Cha <b>Y OBJECTIVES AND GUI</b> rics – Security Management trics – E Commerce Systems – In ecurity Policy Objectives – Ga as a Project– Cyber Security cumentation – The Catalog A	Inology       Operat         Security       Evolut         llenges       DANCE         Goals       – Countin         ndustrial       Contro         uidance       for       Dec         Management       –	urity Policy – Laws ions – Technology ion – Productivity – 9 hrs ng Vulnerabilities – l Systems – Personal ision Makers – Tone Arriving at Goals – log Format – Cyber
UNIT II	I CY And Con Inte I CY Sec Mo at t Cyl Sec II CY Sec II CY Sec II CY	ber Security – C I Regulations – Infiguration - Stra ernet – E commen BER SECURIT ber Security Met bile Devices – Sche Top – Policy ber Security Doc curity Policy Taxo BER SECURIT ber Governance pyright and Tra lvertising- Impo	yber Security policy – Doma - Enterprise Policy – Tech ategy Versus Policy – Cyber rce – Counter Measures – Cha <b>Y OBJECTIVES AND GUI</b> <b>Trics – Security Management</b> as – E Commerce Systems – In ecurity Policy Objectives – Ge as a Project– Cyber Security cumentation – The Catalog A onomy. <b>Y POLICY CATALOG</b> Issues – Net Neutrality – ademarks – Email and M ersonation – Appropriate Use onflict Issues – Intellectual pro-	nology Operat Security Evolut llenges DANCE Goals – Countindustrial Contro uidance for Dec Management – pproach – Cata	ions – Technology ion – Productivity – 9 hrs ng Vulnerabilities – l Systems – Personal ision Makers – Tone Arriving at Goals – log Format – Cyber 9hrs es and Numbers – ber User Issues – ne – Geo location –
UNIT I	I CY And Con Inte I CY Sec Mo at t Cyl Sec II CY Cyl Sec II CY Cyl Cyl Cyl Cyl Cyl Cyl Cyl Cyl	ber Security – C I Regulations – Infiguration - Stra ernet – E commen <b>BER SECURIT</b> ber Security Met curity Framework bile Devices – Sc he Top – Policy ber Security Doc curity Policy Taxo <b>BER SECURIT</b> ber Governance pyright and Tra lvertising- Impe-	yber Security policy – Doma - Enterprise Policy – Tech ategy Versus Policy – Cyber rce – Counter Measures – Cha <b>Y OBJECTIVES AND GUI</b> rrics – Security Management ts – E Commerce Systems – In ecurity Policy Objectives – Ge as a Project– Cyber Security cumentation – The Catalog A onomy. <b>Y POLICY CATALOG</b> Issues – Net Neutrality – ademarks – Email and M ersonation – Appropriate Use onflict Issues – Intellectual pr yber Welfare	nology Operat Security Evolut llenges DANCE Goals – Countindustrial Contro uidance for Dec Management – pproach – Cata	eurity Policy – Laws ions – Technology ion – Productivity – 9 hrs ng Vulnerabilities – 1 Systems – Personal ision Makers – Tone Arriving at Goals – log Format – Cyber 9hrs es and Numbers – ther User Issues – ne – Geo location – Cyber Espionage –
UNIT II	I Cyl Sec Mo at t Cyl Sec Mo at t Cyl Sec II CY Cyl Cyl Cyl Cyl Cyl Cyl Cyl Cyl Cyl Cyl	ber Security – C Regulations – I Regulations – I Regul	yber Security policy – Doma - Enterprise Policy – Tech ategy Versus Policy – Cyber rce – Counter Measures – Cha <b>Y OBJECTIVES AND GUI</b> rrics – Security Management ts – E Commerce Systems – In ecurity Policy Objectives – Ge as a Project– Cyber Security cumentation – The Catalog A onomy. <b>Y POLICY CATALOG</b> Issues – Net Neutrality – ademarks – Email and M ersonation – Appropriate Use onflict Issues – Intellectual pr yber Welfare	Inology Operat Security Evolut Ilenges DANCE Goals – Countindustrial Contro uidance for Dec Management – pproach – Cata Internet Nam essaging - Cy e – Cyber Crim roperty Theft – Current Scenari	surity Policy – Laws ions – Technology ion – Productivity – 9 hrs ng Vulnerabilities – 1 Systems – Personal ision Makers – Tone Arriving at Goals – log Format – Cyber 9hrs es and Numbers – ther User Issues – ne – Geo location – Cyber Espionage – 9hrs o - Types of Attacks

	Overview of Security threats -Weak / Strong Passwords and Password Cracking - Insecure Network connections - Malicious Code - Programming Bugs - Cyber crime and Cyber terrorism - Information Warfare and Surveillance
	L- 45 hrsTotal – 45 hrs
ГЕХТ	BOOKS
1.	Nina Godbole, "Information Systems Security: Security Management, Metrics Frameworks and Best Practices, w/cd", Wiley Publications, 2008, ISBN 10: 8126516925 ISBN 13:9788126516926
2.	Thomas J. Mowbray, "Cybersecurity: Managing Systems, Conducting Testing and Investigating Intrusions", Wiley Publications, 2013, Kindle Edition, ISBN 10 812654919X, ISBN 13 :9788126549191
3.	D.S. Yadav, "Foundations of Information Technology", New Age International publishers 3 rd Edition, 2006, ISBN-10: 8122417620, ISBN-13: 978-8122417623
REFE	RENCES
1.	Mike Shema, "Anti-Hacker Tool Kit", McGraw Hill Education, 4 th edition, 2014,
	Nina Godbole, SunitBelapure, "Cyber Security Understanding Cyber Crimes, Compute Forensics and Legal Perspectives", Wileypublications, 2013, ISBN 10 : 8126521791 ISBN 13:9788126521791.
3.	Corey Schou, Daniel Shoemaker, "Information Assurance for the Enterprise: A Roadmap to Information Security (McGraw-Hill Information Assurance & Security)", Tata McGraw Hill, 2013, ISBN-10: 0072255242, ISBN-13: 978-0072255249.
4.	VivekSood, "Cyber Laws Simplified", McGraw Hill Education (INDIA) Private Limited in 2001, ISBN-10: 0070435065, ISBN-13: 978-0070435063.Steven M.Furnell, "Compute Insecurity", Springer Publisher, 2005 Edition.
E-REI	FERENCES
1	https://www.cryptool.org/en/
2.	https://www.metasploit.com/
3.	http://sectools.org/tool/hydra/
4.	http://www.hping.org/
5.	http://www.winpcap.org/windump/install/
6.	http://www.tcpdump.org/
7.	https://www.wireshark.org/
8.	https://ettercap.github.io/ettercap/
9.	https://www.concise-courses.com/hacking-tools/top-ten/
10	https://www.cirt.net/Nikto2
	http://sqlmap.org/

Mapping of COs with Gas

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	3	2	0	2	0	0	1	0	0	0	0	0	0	0
CO2	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO3	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO4	3	2	3	2	3	2	2	0	2	0	2	2	1	0
CO5	2	2	0	2	0	0	1	0	0	0	0	0	0	0
CO6	1	2	0	3	0	2	2	2	2	0	2	2	0	0
	15	12	9	13	9	8	10	2	8	0	8	8	3	0

1 - Low, 2 – Medium, 3 – High

Semest	er	VII					
Subject	t Name	PROJECT	PHASE-I				
Subject	t Code	XAS 705					
	L –T –P	-С	C:P:A	L –T –	P–H		
0-0-2-2			1.5:0.5:0.5	0-0-2	2-4		
Course	Outcon	ne:		I	Domain		
					C or P or A		
CO1	Identif	y the engine	ering problem relevant to	the domain interest.	C(Analyze)		
CO2	Interpr	et and infer	literature survey for its wo	orthiness.	C(Analyze&		
					Apply)		
CO3	Analys proble		fy an appropriate techniqu	e for solve the	C(Analyze, Apply)		
<b>CO4</b>		m experiment t and interpr	ntation /Simulation/Progra et data.	mming/Fabrication,	P&C(CoR, Create, Apply)		
CO5	Record	d and report	the technical findings as a	document.	C(Remember, Understand)		
CO6	Devote a team	display as a leader in	A &C(Value, Organization,				
					Create)		
CO7	Respo	nding of pro	ject findings among the te	chnocrats.	A(Responding)		

Mapping of COs with Pos

<b></b>							1			1	1					
	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO 1	PSO2		
CO1	3	2	0	2	0	0	1	0	0	0	0	0	0	0		
CO2	3	2	3	2	3	2	2	0	2	0	2	2	1	0		
CO3	3	2	3	2	3	2	2	0	2	0	2	2	1	0		
CO4	3	2	3	2	3	2	2	0	2	0	2	2	1	0		
CO5	2	2	0	2	0	0	1	0	0	0	0	0	0	0		
CO6	1	2	0	1	0	2	2	2	2	0	2	2	0	0		
	15	12	9	11	9	8	10	2	8	0	8	8	3	0		
1 - Low	, 2 – M	edium	, 3 – I	ligh				I				1				
Semeste	er	VI	Ι													
Subject	Name	PR	OJEC	T PH	ASE-I	Ι										
Subject	Code	XA	S 804													
	L –T –]	Р-С				C:P:A	<b>L</b>			Ι	∠ <b>–</b> T -	Т –Р –Н				
(	)- 0-1	2-12				6:3:3				0-	0 -	- 12- 24				
Course	Outcon	ne:										Do	omain			
	-											C or P or A				
CO1	Identi intere	•	Engir	neering	g Probl	em rel	levant	to the	doma	in	(	C(Analyze)				
CO2	Interp	oret an	d Infe	r Liter	ature s	urvey	for its	worth	iness.		(	C(Anal	Analyze,			
											1	Apply)				
CO3	Analy proble		d ident	tify an	appro	priate	techni	que fo	r solve	e the		C(Anal Apply)	yze,			
CO4				entation ammin		oricatio	on, Col	llect a	nd inte	erpret		P&C(C Create,		/)		
CO5	Recon	d and	Repo	rt the t	echnic	al find	lings a	s a do	cumen	ıt.		C(Rem Unders		,		
CO6				a resp ge pro		e men	nber ar	nd disp	olay as	a lead		A &C( Organiz				
											0	Create)				
<b>CO7</b>	Respo	onding	g of pr	oject fi	nding	s amoi	ng the	techno	ocrats.		1	A(Resp	ondin	g)		

	CO1	CO2	CO3	CO4	CO5	CO6	CO7	Total
PO1	3	2	1	2	1	-	1	10
PO2	3	2	1	2	1	-	1	10
PO3	-	-	1	3	1	-	-	5
PO4	-	1	2	3	1	2	2	11
PO5	-	-	2	3	1	-	-	6
PO6	1	-	1	1	-	3	3	10
PO7	1		1	1	-	1		4
PO8	1	-	1	1	-	3	-	6
PO9	-	-	-	-	2	3	1	6
PO10	-	-	-	-	3	3	3	9
PO11	-				2	2	2	6
PO12	1				3	3	1	8

# Mapping of COs with GAs

1 - Low, 2 – Medium, 3 – High